Solveeit Logo

Question

Question: Two parallel, long wires carry currents \(i _ { 1 }\) and \(i _ { 1 } > i _ { 2 }\). When the curr...

Two parallel, long wires carry currents i1i _ { 1 } and i1>i2i _ { 1 } > i _ { 2 }. When the currents are in the same direction, the magnetic field at a point midway between the wires is 10 μT. If the direction of i2i _ { 2 } is reversed, the field becomes 30 μT. The ratio i1/i2i _ { 1 } / i _ { 2 } is

A

4

B

3

C

2

D

1

Answer

2

Explanation

Solution

Initially when wires carry currents in the same direction as shown. Magnetic field at mid point O due to wires 1 and 2 are respectively

B2=μ04π2i2xB _ { 2 } = \frac { \mu _ { 0 } } { 4 \pi } \cdot \frac { 2 i _ { 2 } } { x }

Hence net magnetic field at O

10×106=μ04π2x(i1i2)10 \times 10 ^ { - 6 } = \frac { \mu _ { 0 } } { 4 \pi } \cdot \frac { 2 } { x } \left( i _ { 1 } - i _ { 2 } \right) .....(i)

If the direction of i2 is reversed then

B2=μ04π2i2xB _ { 2 } = \frac { \mu _ { 0 } } { 4 \pi } \cdot \frac { 2 i _ { 2 } } { x } \otimes

So Bnet=μ04π2x(i1+i2)B _ { n e t } = \frac { \mu _ { 0 } } { 4 \pi } \cdot \frac { 2 } { x } \left( i _ { 1 } + i _ { 2 } \right)

30×106=μ04π2x(i1+i2)30 \times 10 ^ { - 6 } = \frac { \mu _ { 0 } } { 4 \pi } \cdot \frac { 2 } { x } \left( i _ { 1 } + i _ { 2 } \right) ......(ii)

Dividing equation (ii) by (i) i1i2=21\frac { i _ { 1 } } { i _ { 2 } } = \frac { 2 } { 1 }