Question
Question: Two parallel chords of a circle of radius 2 are at a distance \((\sqrt {3} +1)\) apart. If the chord...
Two parallel chords of a circle of radius 2 are at a distance (3+1) apart. If the chords subtend at the center angles of kπ,k2π, where K>0, then the value of [k] is,
[Note: [k] denotes the largest integer less than or equal to k].
Solution
In this particular question first draw the pictorial representation of the above problem it will give us a clear picture of what we have to find out and use the concept that on any right angle triangle cosine is the ratio of base to hypotenuse, so use these concepts to reach the solution of the question.
Complete step-by-step answer :
Consider the circle with center O hand radius 2 units as shown in the above figure.
Therefore, OA = OC = OB = OD = 2 units
AB and CD are two parallel chords that are at distance (3+1) units apart as shown above.
Now these chords subtend angles kπ,k2π at the center as shown above. ⇒∠AOB=kπ,∠DOC=k2π
Line EF is passing through the center so angle AOE and angle COF is the bisector of angle AOB and angle
DOC respectively. ⇒∠AOE=2∠AOB=2kπ=2kπ
And
⇒∠COF=2∠DOC=2k2π=kπ
Let OE=a, therefore, OF=(3+1−a)
Now in triangle AOE,
⇒cos2kπ= hypotenuse base =OAOE=2a………….. (1)
And in triangle COF,
⇒coskπ= hypotenuse base =OCOF=23+1−a…………
Now add equation (1) and (2) we have, ⇒cos2kπ+coskπ=2a+23+1−a
⇒cos2kπ+coskπ=23+1
Now let, 2kπ=θ,⇒kπ=2θ
We have,
⇒cosθ+cos2 θ=23+1
Now as we know that, cos2θ=2cos2θ−1
⇒cosθ+2cos2θ−1=23+1
Let, cosθ=t
⇒t+2t2−1=23+1
⇒4t2+2t−2=3+1
⇒4t2+2t−3−3=0
Now apply quadratic formula we have, ⇒t=2a−b±b2−4ac, where, a=4,b=2,c=(−3−3)
⇒t=2(4)−2±22−4(4)(−3−3)
⇒t=8−2±4−16(−3−3)
⇒t=8−2±52+163=8−2±213+43=4−1±13+43=4−1±(23+1)2
⇒t=4−1+(23+1),4−1−(23+1)
⇒t=23,2−1−3
⇒cosθ=23,2−1−3
As, 2−1−3=2−1−1.732=2−2.732=−1.366
So, cosθ=−1.366 which is not possible as, −1≤cosθ≤1
So the possible case is, ⇒cosθ=23=cos6π
⇒θ=6π
But, 2kπ=θ
⇒2kπ=6π
So on comparing, 2k=6
Therefore, k=3
Now we have to find out the value of k, where k denotes the greatest integer function less than or equal to K.
Therefore,
K=3=3
So this is the required answer.
Note : Whenever we face such types of questions the key concept we have to remember is that always recall the quadratic formula to solve the quadratic equation which is stated above and always recall that the greatest integer of x (say x = 0.1) i.e. [x] = [0.1] = 0 i.e. less than or equal to x.