Solveeit Logo

Question

Question: Two parallel chords of a circle of radius 2 are at a distance \((\sqrt {3} +1)\) apart. If the chord...

Two parallel chords of a circle of radius 2 are at a distance (3+1)(\sqrt {3} +1) apart. If the chords subtend at the center angles of πk,2πk\dfrac{\pi}{k}, \dfrac{2\pi}{k}, where K>0K > 0, then the value of [k] is,
[Note: [k] denotes the largest integer less than or equal to k].

Explanation

Solution

In this particular question first draw the pictorial representation of the above problem it will give us a clear picture of what we have to find out and use the concept that on any right angle triangle cosine is the ratio of base to hypotenuse, so use these concepts to reach the solution of the question.

Complete step-by-step answer :

Consider the circle with center O hand radius 2 units as shown in the above figure.
Therefore, OA = OC = OB = OD = 2 units

AB{AB} and CD{CD} are two parallel chords that are at distance (3+1)(\sqrt{3}+1) units apart as shown above.

Now these chords subtend angles πk,2πk\dfrac{\pi}{k}, \dfrac{2 \pi}{k} at the center as shown above. AOB=πk,DOC=2πk\Rightarrow \angle A O B=\dfrac{\pi}{k}, \angle D O C=\dfrac{2 \pi}{k}

Line EF{EF} is passing through the center so angle AOE and angle COF{COF} is the bisector of angle AOB{AOB} and angle

DOC respectively. AOE=AOB2=πk2=π2k\Rightarrow \angle A O E=\dfrac{\angle A O B}{2}=\dfrac{\dfrac{\pi}{k}}{2}=\dfrac{\pi}{2 k}

And

COF=DOC2=2πk2=πk\Rightarrow \angle C O F=\dfrac{\angle D O C}{2}=\dfrac{\dfrac{2 \pi}{k}}{2}=\dfrac{\pi}{k}

Let OE=a{OE}=\\{a}, therefore, OF=(3+1a){OF}=(\sqrt{3}+1-a)

Now in triangle AOE,

cosπ2k= base  hypotenuse =OEOA=a2..\Rightarrow \cos \dfrac{\pi}{2 k}=\dfrac{\text { base }}{\text { hypotenuse }}=\dfrac{O E}{O A}=\dfrac{a}{2} \ldots \ldots \ldots \ldots . . (1)

And in triangle COF,

cosπk= base  hypotenuse =OFOC=3+1a2\Rightarrow \cos \dfrac{\pi}{k}=\dfrac{\text { base }}{\text { hypotenuse }}=\dfrac{O F}{O C}=\dfrac{\sqrt{3}+1-a}{2} \ldots \ldots \ldots \ldots

Now add equation (1) and (2) we have, cosπ2k+cosπk=a2+3+1a2\Rightarrow \cos \dfrac{\pi}{2 k}+\cos \dfrac{\pi}{k}=\dfrac{a}{2}+\dfrac{\sqrt{3}+1-a}{2}

cosπ2k+cosπk=3+12\Rightarrow \cos \dfrac{\pi}{2 k}+\cos \dfrac{\pi}{k}=\dfrac{\sqrt{3}+1}{2}

Now let, π2k=θ,πk=2θ\dfrac{\pi}{2 k}=\theta, \Rightarrow \dfrac{\pi}{k}=2 \theta

We have,

cosθ+cos2\Rightarrow \cos \theta+\cos 2 θ=3+12\theta=\dfrac{\sqrt{3}+1}{2}

Now as we know that, cos2θ=2cos2θ1\cos 2 \theta=2 \cos ^{2} \theta-1

cosθ+2cos2θ1=3+12\Rightarrow \cos \theta+2 \cos ^{2} \theta-1=\dfrac{\sqrt{3}+1}{2}

Let, cosθ=t\cos \theta={t}

t+2t21=3+12\Rightarrow t+2 t^{2}-1=\dfrac{\sqrt{3}+1}{2}

4t2+2t2=3+1\Rightarrow 4 t^{2}+2 t-2=\sqrt{3}+1

4t2+2t33=0\Rightarrow 4 t^{2}+2 t-\sqrt{3}-3=0

Now apply quadratic formula we have, t=b±b24ac2a\Rightarrow t=\dfrac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}, where, a=4,b=2,c=(33)a=4, b=2, c=(-3-\sqrt{3})

t=2±224(4)(33)2(4)\Rightarrow t=\dfrac{-2 \pm \sqrt{2^{2}-4(4)(-3-\sqrt{3})}}{2(4)}

t=2±416(33)8\Rightarrow t=\dfrac{-2 \pm \sqrt{4-16(-3-\sqrt{3})}}{8}

t=2±52+1638=2±213+438=1±13+434=1±(23+1)24\Rightarrow t=\dfrac{-2 \pm \sqrt{52+16 \sqrt{3}}}{8}=\dfrac{-2 \pm 2 \sqrt{13+4 \sqrt{3}}}{8}=\dfrac{-1 \pm \sqrt{13+4 \sqrt{3}}}{4}=\dfrac{-1 \pm \sqrt{(2 \sqrt{3}+1)^{2}}}{4}

t=1+(23+1)4,1(23+1)4\Rightarrow t=\dfrac{-1+(2 \sqrt{3}+1)}{4}, \dfrac{-1-(2 \sqrt{3}+1)}{4}

t=32,132\Rightarrow t=\dfrac{\sqrt{3}}{2}, \dfrac{-1-\sqrt{3}}{2}

cosθ=32,132\Rightarrow \cos \theta=\dfrac{\sqrt{3}}{2}, \dfrac{-1-\sqrt{3}}{2}

As, 132=11.7322=2.7322=1.366\dfrac{-1-\sqrt{3}}{2}=\dfrac{-1-1.732}{2}=\dfrac{-2.732}{2}=-1.366

So, cosθ=1.366\cos \theta=-1.366 which is not possible as, 1cosθ1-1 \leq \cos \theta \leq 1

So the possible case is, cosθ=32=cosπ6\Rightarrow \cos \theta=\dfrac{\sqrt{3}}{2}=\cos \dfrac{\pi}{6}

θ=π6\Rightarrow \theta=\dfrac{\pi}{6}

But, π2k=θ\dfrac{\pi}{2 k}=\theta

π2k=π6\Rightarrow \dfrac{\pi}{2 k}=\dfrac{\pi}{6}

So on comparing, 2k=62 \mathrm{k}=6

Therefore, k=3k=3

Now we have to find out the value of kk, where kk denotes the greatest integer function less than or equal to K\mathrm{K}.

Therefore,

K=3=3K=3=3

So this is the required answer.

Note : Whenever we face such types of questions the key concept we have to remember is that always recall the quadratic formula to solve the quadratic equation which is stated above and always recall that the greatest integer of x (say x = 0.1) i.e. [x] = [0.1] = 0 i.e. less than or equal to x.