Solveeit Logo

Question

Question: Two open organs pipes of fundamental frequencies \(\upsilon_{1}\) and \(\upsilon_{2}\) are joined in...

Two open organs pipes of fundamental frequencies υ1\upsilon_{1} and υ2\upsilon_{2} are joined in series. The fundamental frequency of the new pipe so obtained will be

A

υ1+υ2\upsilon_{1} + \upsilon_{2}

B

υ1υ2(υ1+υ2)\frac{\upsilon_{1}\upsilon_{2}}{(\upsilon_{1} + \upsilon_{2})}

C

υ1υ2υ1υ2\frac{\upsilon_{1}\upsilon_{2}}{\upsilon_{1} - \upsilon_{2}}

D

(υ12+υ22)\sqrt{\left( \upsilon_{1}^{2} + \upsilon_{2}^{2} \right)}

Answer

υ1υ2(υ1+υ2)\frac{\upsilon_{1}\upsilon_{2}}{(\upsilon_{1} + \upsilon_{2})}

Explanation

Solution

υ1=v2L1\upsilon_{1} = \frac{v}{2L_{1}} …. (i)

υ2=v2L2\upsilon_{2} = \frac{v}{2L_{2}} ….. (ii)

When these two pipes are joined in series, the fundamental frequency of the new pipe is

υ=v2(L1+L2)=v2L1+2L2\upsilon = \frac{v}{2(L_{1} + L_{2})} = \frac{v}{2L_{1} + 2L_{2}}

=vvυ1+vυ2= \frac{v}{\frac{v}{\upsilon_{1}} + \frac{v}{\upsilon_{2}}}

(Using (i) and (ii))

=υ1υ2υ2+υ1= \frac{\upsilon_{1}\upsilon_{2}}{\upsilon_{2} + \upsilon_{1}}