Solveeit Logo

Question

Question: Two objects A and B are moving along the directions as shown in the figure. Find the magnitude and d...

Two objects A and B are moving along the directions as shown in the figure. Find the magnitude and direction of the relative velocity of B w.r.t. A.

Explanation

Solution

Hint Relative velocity of B w.r.t. A is given by:
vBA=vBvA\Rightarrow \overrightarrow{{{v}_{BA}}}=\overrightarrow{{{v}_{B}}}-\overrightarrow{{{v}_{A}}}
Magnitude of this relative velocity is vBA\left| \overrightarrow{{{v}_{BA}}} \right|
Direction of this relative velocity is given by the angle α\alpha which is calculated by:
tanα=vBAyvBAx\Rightarrow \tan \alpha =\frac{{{v}_{B{{A}_{y}}}}}{{{v}_{B{{A}_{x}}}}}
Where vBAy{{v}_{B{{A}_{y}}}} and vBAx{{v}_{B{{A}_{x}}}} are the y and x components of vBA\overrightarrow{{{v}_{BA}}} .

Complete step by step solution
vA=10i^ Here taking the components of velocity of B; vB=20cos30i^+20sin30j^ 103i^+10j^ \begin{aligned} &\Rightarrow \overrightarrow{{{v}_{A}}}=10\widehat{i} \\\ &\Rightarrow \text{Here taking the components of velocity of B;} \\\ &\Rightarrow \overrightarrow{{{v}_{B}}}=20\cos 30{}^\circ \widehat{i}+20\sin 30{}^\circ \widehat{j} \\\ &\Rightarrow10\sqrt{3}\widehat{i}+10\widehat{j} \\\ \end{aligned}
Relative velocity of B w.r.t. A is
vBA=vBvA =103i^+10j^103i^ =10(31)i^+10j^ \begin{aligned} &\Rightarrow \overrightarrow{{{v}_{BA}}}=\overrightarrow{{{v}_{B}}}-\overrightarrow{{{v}_{A}}} \\\ &\Rightarrow =10\sqrt{3}\widehat{i}+10\widehat{j}-10\sqrt{3}\widehat{i} \\\ &\Rightarrow =10\left( \sqrt{3}-1 \right)\widehat{i}+10\widehat{j} \\\ \end{aligned}
Now vBA=10(31)2+12 103+123+1 vBA=10523ms1 For direction; tanα=1010(31) tanα=131 α=tan1(131) \begin{aligned} & Now \\\ &\Rightarrow \left| \overrightarrow{{{v}_{BA}}} \right|=10\sqrt{{{\left( \sqrt{3}-1 \right)}^{2}}+{{1}^{2}}} \\\ &\Rightarrow10\sqrt{3+1-2\sqrt{3}+1} \\\ &\Rightarrow \left| \overrightarrow{{{v}_{BA}}} \right|=10\sqrt{5-2\sqrt{3}}m{{s}^{-1}} \\\ & \text{For direction;} \\\ &\Rightarrow \tan \alpha =\frac{10}{10\left( \sqrt{3}-1 \right)} \\\ &\Rightarrow \tan \alpha =\frac{1}{\sqrt{3}-1} \\\ &\Rightarrow \alpha ={{\tan }^{-1}}\left( \frac{1}{\sqrt{3}-1} \right) \\\ \end{aligned} .

Note
Alternate method:
Velocity of B w.r.t. A:
vBA=vB+(vA)\Rightarrow \overrightarrow{{{v}_{BA}}}=\overrightarrow{{{v}_{B}}}+\left( -\overrightarrow{{{v}_{A}}} \right)

From the figure;
NS=MP=20sin30 NS=10 and ON=OMNM ON=20cos3010 ON=10(31) vBA=ON2+NS2 vBA=10(31)2+12 vBA=10523ms1 \begin{aligned} &\Rightarrow NS=MP=20\sin 30{}^\circ \\\ &\Rightarrow NS=10 \\\ & and \\\ &\Rightarrow ON=OM-NM \\\ &\Rightarrow ON=20\cos 30{}^\circ -10 \\\ &\Rightarrow ON=10\left( \sqrt{3}-1 \right) \\\ &\Rightarrow \left| \overrightarrow{{{v}_{BA}}} \right|=\sqrt{O{{N}^{2}}+N{{S}^{2}}} \\\ &\Rightarrow \left| \overrightarrow{{{v}_{BA}}} \right|=10\sqrt{{{\left( \sqrt{3}-1 \right)}^{2}}+{{1}^{2}}} \\\ &\Rightarrow \left| \overrightarrow{{{v}_{BA}}} \right|=10\sqrt{5-2\sqrt{3}}m{{s}^{-1}} \\\ \end{aligned}
For direction; tan α=NSON tanα=1010(31) tanα=131 α=tan1(131) \begin{aligned} & \text{For direction;} \\\ &\Rightarrow \text{tan }\alpha =\frac{NS}{ON} \\\ &\Rightarrow \tan \alpha =\frac{10}{10\left( \sqrt{3}-1 \right)} \\\ &\Rightarrow \tan \alpha =\frac{1}{\sqrt{3}-1} \\\ &\Rightarrow \alpha ={{\tan }^{-1}}\left( \frac{1}{\sqrt{3}-1} \right) \\\ \end{aligned} .