Solveeit Logo

Question

Mathematics Question on Probability

Two numbers are selected at random from the first six positive integers. If X denotes the larger of two numbers, then Var (X) =?

A

143\frac {14}{3}

B

149\frac {14}{9}

C

73\frac {7}{3}

D

193\frac {19}{3}

Answer

143\frac {14}{3}

Explanation

Solution

For X = 2, the possible observations are (1, 2) and (2,1),
∴P(X=2)= 230\frac {2}{30}=115\frac {1}{15}
For X = 3, the possible observations are (1, 3), (3,1), (2,3) and (3, 2).
∴P(X=3)=430\frac {4}{30}=215\frac {2}{15}
For X = 4, the possible observations are (1, 4), (4, 1), (2,4), (4,2), (3,4) and (4,3).
∴P(X=4)=630\frac {6}{30}=15\frac {1}{5}
For X = 5, the possible observations are (1, 5), (5, 1), (2,5), (5,2), (3,5), (5,3) (5, 4) and (4,5).
∴P(X=5)=830\frac {8}{30}=415\frac {4}{15}
For X = 6, the possible observations are (1, 6), (6, 1), (2,6), (6,2), (3,6), (6,3) (6, 4), (4,6), (5,6) and(6,5).P(X=6)=10/30=1/3.
Therefore, the required probability distribution is as follows.
Then, E(X)=∑XiP(Xi)
E(X) = 2×115\frac {2\times 1}{15}+3×215\frac {3\times 2}{15}+4×15\frac {4\times 1}{5}+5×415\frac {5\times 4}{15}+6×13\frac {6\times 1}{3}
E(X) = 215\frac {2}{15}+615\frac {6}{15}+45\frac {4}{5}+2015\frac {20}{15}+2
E(X) = 2+6+12+20+3015\frac {2+6+12+20+30}{15}
E(X) = 7015\frac {70}{15}
E(X) = 143\frac {14}{3}