Solveeit Logo

Question

Question: Two moving coil meters M1 and M2 have the following particular ![](https://cdn.pureessence.tech/canv...

Two moving coil meters M1 and M2 have the following particular R2=14Ω;N2=42;A2=1.8×103 m2;B2=0.50 T\mathrm { R } _ { 2 } = 14 \Omega ; \mathrm { N } _ { 2 } = 42 ; \mathrm { A } _ { 2 } = 1.8 \times 10 ^ { - 3 } \mathrm {~m} ^ { 2 } ; \mathrm { B } _ { 2 } = 0.50 \mathrm {~T} The spring constants are indentical for the two metres. What is the ratio of corrent sensitivety and voltate sensitivity of M2 to M1?

A

1.4, 1

B

1.4, 0

C

2.8, 2

D

2.8, 0

Answer

1.4, 1

Explanation

Solution

For meter M1,R1=10Ω;N1=30\mathrm { M } _ { 1 } , \mathrm { R } _ { 1 } = 10 \Omega ; \mathrm { N } _ { 1 } = 30

For meter M2,R2=14Ω;N2=42\mathrm { M } _ { 2 } , \mathrm { R } _ { 2 } = 14 \Omega ; \mathrm { N } _ { 2 } = 42

A2=1.8×103 m2;B2=0.50 T;K2=k\mathrm { A } _ { 2 } = 1.8 \times 10 ^ { - 3 } \mathrm {~m} ^ { 2 } ; \mathrm { B } _ { 2 } = 0.50 \mathrm {~T} ; \mathrm { K } _ { 2 } = \mathrm { k }

So, current sensitivity

and voltage sensitivity Vs=N2BAkRV _ { s } = \frac { N _ { 2 } B A } { k R }

Now,

Vs2Vs1=N2B2A2/(K2R2)N1B1A1/(K1R1)=N2B2A2R1K1N1B1A1R2K2\frac { V _ { s _ { 2 } } } { V _ { s _ { 1 } } } = \frac { N _ { 2 } B _ { 2 } A _ { 2 } / \left( K _ { 2 } R _ { 2 } \right) } { N _ { 1 } B _ { 1 } A _ { 1 } / \left( K _ { 1 } R _ { 1 } \right) } = \frac { N _ { 2 } B _ { 2 } A _ { 2 } R _ { 1 } K _ { 1 } } { N _ { 1 } B _ { 1 } A _ { 1 } R _ { 2 } K _ { 2 } }

=42×0.50×(1.8×103)×10×k30×0.25×(3.6×103)×14×k=1= \frac { 42 \times 0.50 \times \left( 1.8 \times 10 ^ { - 3 } \right) \times 10 \times \mathrm { k } } { 30 \times 0.25 \times \left( 3.6 \times 10 ^ { - 3 } \right) \times 14 \times \mathrm { k } } = 1