Solveeit Logo

Question

Physics Question on Moving Charges and Magnetism

Two moving coil meters, M1M_1 and M2M_2 have the following particulars:
R1R_1 =10Ω10\,\Omega , N1N_1 = 30,
A1A_1 = 3.6×103m23.6 × 10^{–3} m^2, B1B_1 = 0.25T0.25\, T
R2R_2 = 14Ω14 \,\Omega, N2N_2 = 42,
A2A_2 = 1.8×103m21.8 × 10^{–3 }m^2 , B2B_2 = 0.50T0.50 T
(The spring constants are identical for the two meters).
Determine the ratio of (a) current sensitivity and (b) voltage sensitivity of M2M_2 and M1M_1.

Answer

For moving coil meter M1M_1:
Resistance, R1R_1 =1010 \,Ω
Number of turns, N1N_1 = 3030
Area of cross-section, A1A_1 = 3.6×103m23.6 × 10^{–3 }m^2
Magnetic field strength, B1B_1 = 0.25T0.25 \,T
Spring constant K1=KK_1 = K

For moving coil meter M2M_2:
Resistance, R2R_2 = 1414 Ω
Number of turns, N2N_2 =4242
Area of cross-section, A2A_2 = 1.8×103m21.8 × 10^{–3} m^2
Magnetic field strength, B2B_2 = 0.50T0.50 \,T
Spring constant, K2=KK_2 = K
(a) Current sensitivity of M1M_1 is given as:
Is1I_{s1} = N1B1A1K1\frac{N_1B_1A_1}{K_1}
And, current sensitivity of M2M_2 is given as:
Is2=N2B2A2k2I_{s2} =\frac{N_2B_2A_2}{k_2}
RatioIs1Is2=N1B1A1N2B2A2=42×0.5×1.8×103×KK×30×0.25×3.6×103=1.4\frac{I_{s1}}{I_{s2}} = \frac{N_1B_1A_1}{N_2B_2A_2} = \frac{42 \times 0.5 \times 1.8 \times 10^{-3} \times K}{K \times30 \times 0.25 \times 3.6 \times 10^{-3 }}= 1.4

Hence, the ratio of current sensitivity of M2M_2 to M1M_1 is 1.4.


(b) Voltage sensitivity for M2M_2 is given as:
Vs2=N2B2A2K2R2V_{s2} =\frac{ N_2B_2A_2}{K_2R_2}
And, voltage sensitivity for M1M_1 is given as:
Vs1=N1B1A1K1R1V_{s1}= \frac{N_1B_1A_1}{K_1R_1}
Ratio Vs2Vs1=N2B2A2K1R1N1B1A1K2R2=42×0.5×1.8×103×10×KK×14×30×0.25×3.6×103=1\frac{V_{s2}}{V_{s1}} = \frac{N_2B_2A_2K_1R_1}{N_1B_1A_1K_2R_2} =\frac{ 42 \times 0.5 \times1.8 \times 10^{-3} \times 10 \times K}{K \times 14 \times 30 \times 0.25 \times 3.6 \times 10^{-3}}= 1

Hence, the ratio of voltage sensitivity of M2M_2 to M1M_1 is 1