Solveeit Logo

Question

Question: Two moles of helium gas undergo a cyclic process as shown in figure. Assuming the gas to be ideal, t...

Two moles of helium gas undergo a cyclic process as shown in figure. Assuming the gas to be ideal, the net work done by the gas is

A

200Rln2

B

100Rln2

C

300Rln2

D

400Rln2

Answer

200Rln2

Explanation

Solution

: At constant pressure

ΔW=PΔV=P×(VfVi)\Delta \mathrm { W } = \mathrm { P } \Delta \mathrm { V } = \mathrm { P } \times \left( \mathrm { V } _ { \mathrm { f } } - \mathrm { V } _ { \mathrm { i } } \right) ….. (i)

For an idea gas PV=nRTP V = n R T

Or PVf=nRTP V _ { f } = n R T and PVi=nRTiP V _ { i } = n R T _ { i }

Form (i)

ΔW=nR(TfTi)..(ii)\therefore \Delta W = n R \left( T _ { f } - T _ { i } \right) \ldots . . ( i i )

For constant temperature, PV=P V = constant

ΔW=nRTlnPiPf\therefore \Delta W = n R T \ln \frac { P _ { i } } { P _ { f } }…… (iii)

So work done for path AB, BC, CD and DA

respectively will be

ΔWAB=nR(TfTi)=2×R(400300)=200R\Delta W _ { A B } = n R \left( T _ { f } - T _ { i } \right) = 2 \times R ( 400 - 300 ) = 200 R(using (ii))

(using (iii))

ΔWCD=nR(TfTi)=2×R[300400]=200R\Delta W _ { C D } = n R \left( T _ { f } - T _ { i } \right) = 2 \times R [ 300 - 400 ] = - 200 R

(using (ii))

ΔWDA=nRTln(PiPf)=2×R×300ln(12)=600Rln2\Delta W _ { D A } = n R T \ln \left( \frac { P _ { i } } { P _ { f } } \right) = 2 \times R \times 300 \ln \left( \frac { 1 } { 2 } \right) = - 600 R \ln 2(using (iii))

Hence, the work done in the complete cycle

ΔW=WAB+WBC+WCD+WDA\Delta W = W _ { A B } + W _ { B C } + W _ { C D } + W _ { D A }

=200R+800Rln2200R600Rln2=200Rln2= 200 R + 800 R \ln 2 - 200 R - 600 R \ln 2 = 200 R \ln 2