Solveeit Logo

Question

Physics Question on specific heat capacity

Two moles of helium are mixed with nn moles of hydrogen. If CPCV=32\frac{C_P}{C_V} = \frac{3}{2} for the mixture, then the value of n is :

A

1

B

3

C

2

D

44622

Answer

2

Explanation

Solution

For mixture of gases, we have (n1+n2)(γ1)=n1(γ11)+n2(γ21)\frac{\left(n_{1}+n_{2}\right)}{(\gamma-1)}=\frac{n_{1}}{\left(\gamma_{1}-1\right)}+\frac{n_{2}}{\left(\gamma_{2}-1\right)} ...(1) Given: n1=2n_{1}=2 (for helium); γ=32\gamma=\frac{3}{2}. Since, f=3f=3 for monatomic gas and f=5f=5 for diatomic gas. Therefore, γ1=(1+2f)=(1+23)=53\gamma_{1}=\left(1+\frac{2}{f}\right)=\left(1+\frac{2}{3}\right)=\frac{5}{3} γ2=(1+25)=75\Rightarrow \gamma_{2}=\left(1+\frac{2}{5}\right)=\frac{7}{5} where ff is number of degrees of freedom. Now, substitute n2=nn_{2}=n in E (1), we get (2+n)(321)=2(531)+n(751)\frac{(2+n)}{\left(\frac{3}{2}-1\right)}=\frac{2}{\left(\frac{5}{3}-1\right)}+\frac{n}{\left(\frac{7}{5}-1\right)} (2+n)1/2=22/3+n2/5\frac{(2+n)}{1 / 2}=\frac{2}{2 / 3}+\frac{n}{2 / 5} 2(2+n)=3+52n\Rightarrow 2(2+n) =3+\frac{5}{2} n 4+2n=3+2.5n4+2 n=3+2.5 n 0.5n=1\Rightarrow 0.5 n=1 n=2\Rightarrow n=2