Solveeit Logo

Question

Question: Two moles of an ideal monoatomic gas undergoes a cyclic process represented by the following P-U dia...

Two moles of an ideal monoatomic gas undergoes a cyclic process represented by the following P-U diagram. Find the work done by the gas in one cycle (in cal).

A

-1200ln2

B

-2400ln2

C

1200ln2

D

2400ln2

Answer

-1200ln2

Explanation

Solution

The problem asks for the work done by two moles of an ideal monoatomic gas undergoing a cyclic process shown on a P-U diagram.

For an ideal monoatomic gas, the internal energy UU is related to pressure PP and volume VV by the equation: U=32nRTU = \frac{3}{2} nRT

Also, from the ideal gas law, PV=nRTPV = nRT. Substituting nRTnRT into the internal energy equation, we get: U=32PVU = \frac{3}{2} PV

From this, we can express volume VV as: V=2U3PV = \frac{2U}{3P}

Let's identify the coordinates of the four corners of the cycle from the P-U diagram: Point A: (U1,P1)=(1800 cal,2 atm)(U_1, P_1) = (1800 \text{ cal}, 2 \text{ atm}) Point B: (U2,P1)=(3600 cal,2 atm)(U_2, P_1) = (3600 \text{ cal}, 2 \text{ atm}) Point C: (U2,P2)=(3600 cal,4 atm)(U_2, P_2) = (3600 \text{ cal}, 4 \text{ atm}) Point D: (U1,P2)=(1800 cal,4 atm)(U_1, P_2) = (1800 \text{ cal}, 4 \text{ atm})

Now, let's calculate the volume at each point using V=2U3PV = \frac{2U}{3P}: VA=2×1800 cal3×2 atm=36006calatm=600calatmV_A = \frac{2 \times 1800 \text{ cal}}{3 \times 2 \text{ atm}} = \frac{3600}{6} \frac{\text{cal}}{\text{atm}} = 600 \frac{\text{cal}}{\text{atm}} VB=2×3600 cal3×2 atm=72006calatm=1200calatmV_B = \frac{2 \times 3600 \text{ cal}}{3 \times 2 \text{ atm}} = \frac{7200}{6} \frac{\text{cal}}{\text{atm}} = 1200 \frac{\text{cal}}{\text{atm}} VC=2×3600 cal3×4 atm=720012calatm=600calatmV_C = \frac{2 \times 3600 \text{ cal}}{3 \times 4 \text{ atm}} = \frac{7200}{12} \frac{\text{cal}}{\text{atm}} = 600 \frac{\text{cal}}{\text{atm}} VD=2×1800 cal3×4 atm=360012calatm=300calatmV_D = \frac{2 \times 1800 \text{ cal}}{3 \times 4 \text{ atm}} = \frac{3600}{12} \frac{\text{cal}}{\text{atm}} = 300 \frac{\text{cal}}{\text{atm}}

The cyclic process consists of four steps as indicated by the arrows: A \to B \to C \to D \to A.

1. Process A to B (Isobaric expansion): Pressure PP is constant at P1=2 atmP_1 = 2 \text{ atm}. Work done WAB=P1(VBVA)W_{AB} = P_1 (V_B - V_A) WAB=2 atm×(1200600)calatm=2×600 cal=1200 calW_{AB} = 2 \text{ atm} \times (1200 - 600) \frac{\text{cal}}{\text{atm}} = 2 \times 600 \text{ cal} = 1200 \text{ cal}

2. Process B to C (Isothermal compression): Internal energy UU is constant at U2=3600 calU_2 = 3600 \text{ cal}. For an ideal gas, constant UU implies constant temperature TT (isothermal process). Work done WBC=nRTln(VCVB)W_{BC} = nRT \ln\left(\frac{V_C}{V_B}\right) From U=32nRTU = \frac{3}{2} nRT, we have nRT=23UnRT = \frac{2}{3} U. So, nRT=23×3600 cal=2400 calnRT = \frac{2}{3} \times 3600 \text{ cal} = 2400 \text{ cal}. WBC=2400 cal×ln(6001200)=2400ln(12)=2400ln(2) calW_{BC} = 2400 \text{ cal} \times \ln\left(\frac{600}{1200}\right) = 2400 \ln\left(\frac{1}{2}\right) = -2400 \ln(2) \text{ cal}

3. Process C to D (Isobaric compression): Pressure PP is constant at P2=4 atmP_2 = 4 \text{ atm}. Work done WCD=P2(VDVC)W_{CD} = P_2 (V_D - V_C) WCD=4 atm×(300600)calatm=4×(300) cal=1200 calW_{CD} = 4 \text{ atm} \times (300 - 600) \frac{\text{cal}}{\text{atm}} = 4 \times (-300) \text{ cal} = -1200 \text{ cal}

4. Process D to A (Isothermal expansion): Internal energy UU is constant at U1=1800 calU_1 = 1800 \text{ cal}. This is an isothermal process. Work done WDA=nRTln(VAVD)W_{DA} = nRT \ln\left(\frac{V_A}{V_D}\right) From U=32nRTU = \frac{3}{2} nRT, we have nRT=23UnRT = \frac{2}{3} U. So, nRT=23×1800 cal=1200 calnRT = \frac{2}{3} \times 1800 \text{ cal} = 1200 \text{ cal}. WDA=1200 cal×ln(600300)=1200ln(2) calW_{DA} = 1200 \text{ cal} \times \ln\left(\frac{600}{300}\right) = 1200 \ln(2) \text{ cal}

Total work done in one cycle: The total work done by the gas in one cycle is the sum of the work done in each process: Wcycle=WAB+WBC+WCD+WDAW_{cycle} = W_{AB} + W_{BC} + W_{CD} + W_{DA} Wcycle=1200 cal+(2400ln(2) cal)+(1200 cal)+(1200ln(2) cal)W_{cycle} = 1200 \text{ cal} + (-2400 \ln(2) \text{ cal}) + (-1200 \text{ cal}) + (1200 \ln(2) \text{ cal}) Wcycle=(12001200)+(2400ln(2)+1200ln(2))W_{cycle} = (1200 - 1200) + (-2400 \ln(2) + 1200 \ln(2)) Wcycle=01200ln(2) calW_{cycle} = 0 - 1200 \ln(2) \text{ cal} Wcycle=1200ln(2) calW_{cycle} = -1200 \ln(2) \text{ cal}

The work done by the gas in one cycle is 1200ln(2)-1200 \ln(2) cal.