Solveeit Logo

Question

Chemistry Question on internal energy

Two moles of an ideal monoatomic gas occupies a volume VV at 27C27^{\circ}C. The gas expands adiabatically to a volume 2V2V. Calculate (a)(a) the final temperature of the gas and (b)(b) change in its internal energy -

A

(a) 189 K (b) 2.7 kJ

B

(a) 195 K (b) - 2.7 kJ

C

(a) 189 K (b) -2.7 kJ

D

(a) 195 K (b) 2.7 kJ

Answer

(a) 189 K (b) -2.7 kJ

Explanation

Solution

TVγ1=T V^{\gamma-1}= Constant Tf=300(V2V)531=189,KT_{f}=300\left(\frac{V}{2 V}\right)^{\frac{5}{3}-1}=189\,, K ΔU=nCvΔT=2×3R2×[189300]\Delta U=n C_{v} \Delta T=2 \times \frac{3 R}{2} \times[189-300] =2.7kJ=-2.7 \,kJ