Solveeit Logo

Question

Question: Two metal spheres, one of radius R and the other of radius 2R, both have same surface charge density...

Two metal spheres, one of radius R and the other of radius 2R, both have same surface charge density σ\sigma. If they are brought in contact and separated, then the new surface charge densities one each of the sphere are respectively.

A

52σ,54σ\frac{5}{2}\sigma,\frac{5}{4}\sigma

B

53σ,56σ\frac{5}{3}\sigma,\frac{5}{6}\sigma

C

35σ,65σ\frac{3}{5}\sigma,\frac{6}{5}\sigma

D

23σ12σ\frac{2}{3}\sigma\frac{1}{2}\sigma

Answer

53σ,56σ\frac{5}{3}\sigma,\frac{5}{6}\sigma

Explanation

Solution

: Before contact, charges of each spheres,

q1=σ4πR2q_{1} = \sigma 4\pi R^{2} and q2=σ4π(2R)2=4q1q_{2} = \sigma 4\pi(2R)^{2} = 4q_{1}

When the two sphere sphere aer brought in contact, their charges are shared till their potentials become equal i.e.

V1=V2.V_{1} = V_{2}.

ql4πε0R=q24πε0(2R)\therefore\frac{q'_{l}}{4\pi\varepsilon_{0}R} = \frac{q'_{2}}{4\pi\varepsilon_{0}(2R)}

q2=2ql\therefore q'_{2} = 2q'_{l} … (i)

As there is no loss of charge in the process

q1+q2=q1+q2=q1+4q1=5q1=5(σ4πR2)\therefore q _ { 1 } ^ { \prime } + q _ { 2 } ^ { \prime } = q _ { 1 } + q _ { 2 } = q _ { 1 } + 4 q _ { 1 } = 5 q _ { 1 } = 5 \left( \sigma 4 \pi R ^ { 2 } \right)

or q1+2q1=5σ4πR2q'_{1} + 2q'_{1} = 5\sigma 4\pi R^{2} (using (i))

q1=53σ4πR2q'_{1} = \frac{5}{3}\sigma 4\pi R^{2} and q2=2ql=103(σ4πR2)q'_{2} = 2q'_{l} = \frac{10}{3}(\sigma 4\pi R^{2})

Hence, σ1=ql4πR2=53σ,σ2=q24π(2R)2=56σ\sigma_{1} = \frac{q'_{l}}{4\pi R^{2}} = \frac{5}{3}\sigma,\sigma_{2} = \frac{q'_{2}}{4\pi(2R)^{2}} = \frac{5}{6}\sigma