Solveeit Logo

Question

Physics Question on Electrostatic potential

Two metal spheres, one of radius RR and the other of radius 2R2R respectively have the same surface charge density σ\sigma. They are brought in contact and separated. What will be the new surface charge densities on them ?

A

σ1=56σ,σ2=52σ\sigma_{1} =\frac{5}{6}\sigma,\quad\sigma_{2} =\frac{5}{2}\sigma

B

σ1=52σ,σ2=56σ\sigma_{1} =\frac{5}{2}\sigma,\quad\sigma_{2} =\frac{5}{6}\sigma

C

σ1=52σ,σ2=53σ\sigma_{1} =\frac{5}{2}\sigma,\quad\sigma_{2} =\frac{5}{3}\sigma

D

σ1=53σ,σ2=56σ\sigma_{1} =\frac{5}{3}\sigma,\quad\sigma_{2} =\frac{5}{6}\sigma

Answer

σ1=53σ,σ2=56σ\sigma_{1} =\frac{5}{3}\sigma,\quad\sigma_{2} =\frac{5}{6}\sigma

Explanation

Solution

Before contact, Q1=σ4πR2Q_{1}=\sigma\cdot4\pi R^{2} and Q2=σ4π(2R)2Q_{2}=\sigma\cdot4\pi\left(2R\right)^{2}
As, surface charge density, σ=Net charge(Q)Surface area(A)\sigma=\frac{\text{Net charge} \left(Q\right)}{\text{Surface area} \left(A\right)}
Now, after contact, Q1+Q2=Q1+Q2=5Q1Q'_{1}+Q'_{2}=Q_{1}+Q_{2}=5Q_{1}
=5(σ4πR2)=5\left(\sigma\cdot4\pi R^{2}\right)
They will be at equal potentials, so,
Q1R=Q22R\frac{Q'_{1}}{R}=\frac{Q'_{2}}{2R}
Q2=2Q1\Rightarrow Q'_{2}=2Q'_{1}
3Q1=5(σ4πR2)\therefore 3Q'_{1}=5\left(\sigma\cdot4\pi R^{2}\right) (From equation (i))
and Q2=103(σ4πR2)Q'_{2}=\frac{10}{3}\left(\sigma\cdot4\pi R^{2}\right)
σ1=53σ\therefore \sigma_{1}=\frac{5}{3}\sigma and σ2=56σ\sigma_{2}=\frac{5}{6}\sigma