Solveeit Logo

Question

Question: Two men are walking on a path \( {x^3} + {y^3} = {a^3} \) . When the first man arrives at a point \(...

Two men are walking on a path x3+y3=a3{x^3} + {y^3} = {a^3} . When the first man arrives at a point (x1,y1)({x_1},{y_1}) , he finds the second man in the direction of his own instantaneous motion. If the coordinates of the second man are (x2,y2)({x_2},{y_2}) then :
(1)(x1x2)+(y1y2)=0(1)\left( {\dfrac{{{x_1}}}{{{x_2}}}} \right) + \left( {\dfrac{{{y_1}}}{{{y_2}}}} \right) = 0
(2)(x2x1)+(y2y1)=0(2)\left( {\dfrac{{{x_2}}}{{{x_1}}}} \right) + \left( {\dfrac{{{y_2}}}{{{y_1}}}} \right) = 0
(3)(x1x2)+(y1y2)+1=0(3)\left( {\dfrac{{{x_1}}}{{{x_2}}}} \right) + \left( {\dfrac{{{y_1}}}{{{y_2}}}} \right) + 1 = 0
(4)(x2x1)+(y2y1)+1=0(4)\left( {\dfrac{{{x_2}}}{{{x_1}}}} \right) + \left( {\dfrac{{{y_2}}}{{{y_1}}}} \right) + 1 = 0

Explanation

Solution

This question is based on the concept that if a point lies on a curve, then the coordinates of the point will satisfy the equation of the curve. The two important identities which will be used to solve this question are:
(a3b3)=(ab)(a2+b2+ab)({a^3} - {b^3}) = (a - b)({a^2} + {b^2} + ab)
a2b2=(a+b)(ab){a^2} - {b^2} = (a + b)(a - b) .

Complete answer:
Since both the point (x1,y1)({x_1},{y_1}) and (x2,y2)({x_2},{y_2}) lie on the same curve x3+y3=a3{x^3} + {y^3} = {a^3} , so,
x13+y13=a3........(1)x_1^3 + y_1^3 = {a^3}........(1)
Similarly,
x23+y23=a3........(2)x_2^3 + y_2^3 = {a^3}........(2)
On subtracting equation (1) from equation (2),
(x23x13)+(y23y13)=0(x_2^3 - x_1^3) + (y_2^3 - y_1^3) = 0
(x23x13)=(y23y13).......(3)(x_2^3 - x_1^3) = - (y_2^3 - y_1^3).......(3)
We know that the equation of the path is x3+y3=a3{x^3} + {y^3} = {a^3}
On differentiating this equation,
3x2+3y2(dydx)=03{x^2} + 3{y^2}\left( {\dfrac{{dy}}{{dx}}} \right) = 0
3y2(dydx)=3x23{y^2}\left( {\dfrac{{dy}}{{dx}}} \right) = - 3{x^2}
On cancelling 33 on both the sides,
y2(dydx)=x2{y^2}\left( {\dfrac{{dy}}{{dx}}} \right) = - {x^2}
(dydx)=x2y2\left( {\dfrac{{dy}}{{dx}}} \right) = \dfrac{{ - {x^2}}}{{{y^2}}}
Hence, we can say that the slope of the tangent at (x1,y1)({x_1},{y_1}) is (dydx)=x2y2\left( {\dfrac{{dy}}{{dx}}} \right) = \dfrac{{ - {x^2}}}{{{y^2}}}
The equation of the tangent at (x1,y1)({x_1},{y_1}) is yy1=(x12y12)(xx1)y - {y_1} = - \left( {\dfrac{{x_1^2}}{{y_1^2}}} \right)(x - {x_1})
Now this passes through (x2,y2)({x_2},{y_2})
y2y1=(x12y12)(x2x1){y_2} - {y_1} = - \left( {\dfrac{{x_1^2}}{{y_1^2}}} \right)({x_2} - {x_1})
On cross multiplying, we get,
(x2x1+y2y1+1)=0\left( {\dfrac{{{x_2}}}{{{x_1}}} + \dfrac{{{y_2}}}{{{y_1}}} + 1} \right) = 0
On dividing equation (3) and (4), we get,
(x23x13)x12(x2x1)=(y23y13)y12(y2y1)\dfrac{{(x_2^3 - x_1^3)}}{{x_1^2({x_2} - {x_1})}} = \dfrac{{ - (y_2^3 - y_1^3)}}{{ - y_1^2({y_2} - {y_1})}}
On putting the identity (a3b3)=(ab)(a2+b2+ab)({a^3} - {b^3}) = (a - b)({a^2} + {b^2} + ab) ,
(x2x1)(x22+x12+x1x2)x12(x2x1)=(y2y1)(y22+y12+y1y2)y12(y2y1)\dfrac{{({x_2} - {x_1})(x_2^2 + x_1^2 + {x_1}{x_2})}}{{x_1^2({x_2} - {x_1})}} = \dfrac{{ - ({y_2} - {y_1})(y_2^2 + y_1^2 + {y_1}{y_2})}}{{ - y_1^2({y_2} - {y_1})}}
(x22+x12+x1x2)x12=(y22+y12+y1y2)y12\dfrac{{(x_2^2 + x_1^2 + {x_1}{x_2})}}{{x_1^2}} = \dfrac{{(y_2^2 + y_1^2 + {y_1}{y_2})}}{{y_1^2}}
On further simplifying, we get,
(x2x1)2+1+(x2x1)=(y2y1)2+1+(y2y1){\left( {\dfrac{{{x_2}}}{{{x_1}}}} \right)^2} + 1 + \left( {\dfrac{{{x_2}}}{{{x_1}}}} \right) = {\left( {\dfrac{{{y_2}}}{{{y_1}}}} \right)^2} + 1 + \left( {\dfrac{{{y_2}}}{{{y_1}}}} \right)
(x2x1)2+(x2x1)=(y2y1)2+(y2y1){\left( {\dfrac{{{x_2}}}{{{x_1}}}} \right)^2} + \left( {\dfrac{{{x_2}}}{{{x_1}}}} \right) = {\left( {\dfrac{{{y_2}}}{{{y_1}}}} \right)^2} + \left( {\dfrac{{{y_2}}}{{{y_1}}}} \right)
On taking all the terms on the same side,
(x2x1)2(y2y1)2+(x2x1)(y2y1)=0{\left( {\dfrac{{{x_2}}}{{{x_1}}}} \right)^2} - {\left( {\dfrac{{{y_2}}}{{{y_1}}}} \right)^2} + \left( {\dfrac{{{x_2}}}{{{x_1}}}} \right) - \left( {\dfrac{{{y_2}}}{{{y_1}}}} \right) = 0
On applying the identity a2b2=(a+b)(ab){a^2} - {b^2} = (a + b)(a - b) on (x2x1)2(y2y1)2{\left( {\dfrac{{{x_2}}}{{{x_1}}}} \right)^2} - {\left( {\dfrac{{{y_2}}}{{{y_1}}}} \right)^2} , we get,
(x2x1+y2y1)(x2x1y2y1)+(x2x1y2y1)=0\left( {\dfrac{{{x_2}}}{{{x_1}}} + \dfrac{{{y_2}}}{{{y_1}}}} \right)\left( {\dfrac{{{x_2}}}{{{x_1}}} - \dfrac{{{y_2}}}{{{y_1}}}} \right) + \left( {\dfrac{{{x_2}}}{{{x_1}}} - \dfrac{{{y_2}}}{{{y_1}}}} \right) = 0
On taking (x2x1y2y1)\left( {\dfrac{{{x_2}}}{{{x_1}}} - \dfrac{{{y_2}}}{{{y_1}}}} \right) as common,
(x2x1y2y1)(x2x1+y2y1+1)=0\left( {\dfrac{{{x_2}}}{{{x_1}}} - \dfrac{{{y_2}}}{{{y_1}}}} \right)\left( {\dfrac{{{x_2}}}{{{x_1}}} + \dfrac{{{y_2}}}{{{y_1}}} + 1} \right) = 0
So, we can say that (x2x1)+(y2y1)+1=0\left( {\dfrac{{{x_2}}}{{{x_1}}}} \right) + \left( {\dfrac{{{y_2}}}{{{y_1}}}} \right) + 1 = 0
So, the correct answer is (4)(x2x1)+(y2y1)+1=0(4)\left( {\dfrac{{{x_2}}}{{{x_1}}}} \right) + \left( {\dfrac{{{y_2}}}{{{y_1}}}} \right) + 1 = 0

Note:
The coordinates of a point are a pair of numbers that define its exact location on a two-dimensional plane. The coordinate plane has two axes at right angles to each other, called the xx and yy axis. The coordinates of a given point represent how far along each axis the point is located.