Solveeit Logo

Question

Question: Two masses each of mass *M* are attached to the end of a rigid massless rod of length *L.* The momen...

Two masses each of mass M are attached to the end of a rigid massless rod of length L. The moment of inertia of the system about an axis passing centre of mass and perpendicular to its length is

A

ML24\frac { \mathrm { ML } ^ { 2 } } { 4 }

B

ML22\frac { \mathrm { ML } ^ { 2 } } { 2 }

C
D

2ML22 \mathrm { ML } ^ { 2 }

Answer

ML22\frac { \mathrm { ML } ^ { 2 } } { 2 }

Explanation

Solution

The moment of inertia of the system about the given axis is.

I=M(L2)2+M(L2)2=ML24+ML24=ML22\mathrm { I } = \mathrm { M } \left( \frac { \mathrm { L } } { 2 } \right) ^ { 2 } + \mathrm { M } \left( \frac { \mathrm { L } } { 2 } \right) ^ { 2 } = \frac { \mathrm { ML } ^ { 2 } } { 4 } + \frac { \mathrm { ML } ^ { 2 } } { 4 } = \frac { \mathrm { ML } ^ { 2 } } { 2 }