Solveeit Logo

Question

Question: Two magnets of equal mass are joined at right angles to each other as shown the magnet 1 has a magne...

Two magnets of equal mass are joined at right angles to each other as shown the magnet 1 has a magnetic moment 3 times that of magnet 2. This arrangement is pivoted so that it is free to rotate in the horizontal plane. In equilibrium what angle will the magnet 1 subtend with the magnetic meridian

A

tan1(12)\tan ^ { - 1 } \left( \frac { 1 } { 2 } \right)

B

tan1(13)\tan ^ { - 1 } \left( \frac { 1 } { 3 } \right)

C

tan1(1)\tan ^ { - 1 } ( 1 )

D

00

Answer

tan1(13)\tan ^ { - 1 } \left( \frac { 1 } { 3 } \right)

Explanation

Solution

For equilibrium of the system torques on M1M _ { 1 } and BHB _ { H } then the angle between BHB _ { H } will be (90 – θ)

so M1BHsinθ=M2BHsin(90θ)M _ { 1 } B _ { H } \sin \theta = M _ { 2 } B _ { H } \sin ( 90 - \theta )

tanθ=M2M1=M3M=13θ=tan1(13)\tan \theta = \frac { M _ { 2 } } { M _ { 1 } } = \frac { M } { 3 M } = \frac { 1 } { 3 } \Rightarrow \theta = \tan ^ { - 1 } \left( \frac { 1 } { 3 } \right)