Solveeit Logo

Question

Question: Two long coaxial cylindrical metal tubes (inner radius a, outer radius b) stand vertically in a tank...

Two long coaxial cylindrical metal tubes (inner radius a, outer radius b) stand vertically in a tank of dielectric oil (of mass density r, dielectric constant K). The inner one is maintained at potential V and the outer one is grounded. To what equilibrium height (h) does the oil rise in the space between the tubes ? [Assume this height (h) as a equilibrium height]

A

ε02V2(K1)gρ(b2a2)logba\frac{\varepsilon_{0}2V^{2}(K - 1)}{g\rho(b^{2} - a^{2})\log\frac{b}{a}}

B

ε0V2(K1)ρ(b2a2)glogba\frac{\varepsilon_{0}V^{2}(K - 1)}{\rho(b^{2} - a^{2})g\log\frac{b}{a}}

C

4ε0V2(K1)gρ(b2a2)logba\frac{4\varepsilon_{0}V^{2}(K - 1)}{g\rho(b^{2} - a^{2})\log\frac{b}{a}}

D

6ε0V2(K1)ρ(b2a2)glogba\frac{6\varepsilon_{0}V^{2}(K - 1)}{\rho(b^{2} - a^{2})g\log\frac{b}{a}}

Answer

ε0V2(K1)ρ(b2a2)glogba\frac{\varepsilon_{0}V^{2}(K - 1)}{\rho(b^{2} - a^{2})g\log\frac{b}{a}}

Explanation

Solution

Gravitational force = mg

= rp (b2 – a2)gh

Net upward force F = dUdh\frac { \mathrm { dU } } { \mathrm { dh } }

=

where h is the height of liquid.

Now we calculate C as a function of h

Ceq = CAir + CK

= 2πε0( Lh)lnba\frac { 2 \pi \varepsilon _ { 0 } ( \mathrm {~L} - \mathrm { h } ) } { \ln \frac { \mathrm { b } } { \mathrm { a } } } +

C = 2πε0{ L+(K1)h}lnba\frac { 2 \pi \varepsilon _ { 0 } \{ \mathrm {~L} + ( \mathrm { K } - 1 ) \mathrm { h } \} } { \ln \frac { \mathrm { b } } { \mathrm { a } } }

F = =12 V2\frac { 1 } { 2 } \mathrm {~V} ^ { 2 }

\ F = mg

12 V2×2πε0( K1)logeba\frac { \frac { 1 } { 2 } \mathrm {~V} ^ { 2 } \times 2 \pi \varepsilon _ { 0 } ( \mathrm {~K} - 1 ) } { \log _ { \mathrm { e } } \frac { \mathrm { b } } { \mathrm { a } } }= rp(b2 – a2) gh

h = πε0 V2( K1)ρπ(b2a2)glogeba\frac { \pi \varepsilon _ { 0 } \mathrm {~V} ^ { 2 } ( \mathrm {~K} - 1 ) } { \rho \pi \left( \mathrm { b } ^ { 2 } - \mathrm { a } ^ { 2 } \right) \mathrm { g } \log _ { \mathrm { e } } \frac { \mathrm { b } } { \mathrm { a } } }

= ε0V2(K1)ρ(b2a2)glogeba\frac { \varepsilon _ { 0 } V ^ { 2 } ( K - 1 ) } { \rho \left( b ^ { 2 } - a ^ { 2 } \right) g \log _ { e } \frac { b } { a } }