Solveeit Logo

Question

Question: Two long coaxial and conducting cylinders of radius a and b are separated by a material of conductiv...

Two long coaxial and conducting cylinders of radius a and b are separated by a material of conductivity s and a constant potential difference V is maintained between them, by a battery. Then the current, per unit length of the cylinder flowing from one cylinder to the other is –

A

4πσln(b/a)\frac{4\pi\sigma}{\mathcal{l}n(b/a)}V

B

4πσ(b+a)\frac{4\pi\sigma}{(b + a)}V

C

2πσln(b/a)\frac{2\pi\sigma}{\mathcal{l}n(b/a)}V

D

2πσ(b/a)\frac{2\pi\sigma}{(b/a)}V

Answer

2πσln(b/a)\frac{2\pi\sigma}{\mathcal{l}n(b/a)}V

Explanation

Solution

E = λ2π0r\frac{\lambda}{2\pi \in_{0}r} where l is the linear charge density on the inner cylinder.

and V = abE.dl\int_{a}^{b}{E.d\mathcal{l}} =λ2π0\frac{\lambda}{2\pi \in_{0}} ln\mathcal{l}n [ba]\left\lbrack \frac{b}{a} \right\rbrack …(1)

Now I = J.dA=σE.dA\int_{}^{}{\overrightarrow{J}.\overset{\rightarrow}{dA}} = \sigma\int_{}^{}{\overrightarrow{E}.}\overset{\rightarrow}{dA}= sλ2π0r\int_{}^{}\frac{\lambda}{2\pi \in_{0}r}.2prdr

Current per unit length will be :

I = σλ0\frac{\sigma\lambda}{\in_{0}}…(2)

From (1) : I = 2σπ00ln(b/a)V\frac{2\sigma\pi \in_{0}}{\in_{0}\mathcal{l}n(b/a)}V = 2πσln(b/a)V\frac{2\pi\sigma}{\mathcal{l}n(b/a)}V