Question
Mathematics Question on introduction to three dimensional geometry
Two lines L1:x=53−αy=−2z and L1:x=α−1y=2−αz are coplaner. Then, α can take value(s)
1
2
3
4
4
Solution
If two straight lines are coplanar,
i.e, a1x−x1=b1y−y1=c1z−z1
and a2x−x2=b2y−y2=c2z−z2 are coplanar
Then, (x2−x1,y2−y1,z2−z1),(a1,b1,c1) and (a2,b2,c2) are
coplanar,
i.e. \hspace10mm x2−x1 a1 a1 y2−y1b1b2z2−z1c1c2=0
Here, \hspace20mm x =5, \frac{y}{3-\alpha} = \frac{z}{-2}
\Rightarrow \hspace20mm \frac{x - 5}{0} =\frac{y-0}{-(-\alpha-3)} = \frac{z-0}{-2} \hspace20mm ...(i)
and \hspace20mm x = \alpha, \frac{y}{-1} = \frac{z}{2- \alpha}
⇒ \hspace20mm \frac{x - \alpha}{0} =\frac{y-0}{-1} = \frac{z-0}{2- \alpha} \hspace25mm ...(ii)
⇒ \hspace10mm 5−α 0 0 03−α−10−22−α=0
⇒ (5−α)[(3−α) (2−α)−2]=0
\Rightarrow \hspace15mm (5-\alpha) [ \alpha^2-5\alpha+4] = 0
\Rightarrow \hspace15mm (5-\alpha) (\alpha - 1)(\alpha-4) = 0
\therefore \hspace50mm \alpha = 1,4,5