Question
Question: Two lines \[{L_1}:x = 5,\dfrac{y}{{3 - \alpha }} = \dfrac{z}{{ - 2}}\] and \[{L_2}:x = \alpha ,\dfra...
Two lines L1:x=5,3−αy=−2z and L2:x=α,−1y=2−αz are coplanar. Then α can take value(s)
This question has multiple correct options
A. 1
B. 2
C. 3
D. 4
Solution
In this question we will proceed by rewriting the given lines into their standard equation form. Then use the condition of coplanarity for two lines to be in coplanar to get the required values of α.
Complete step by step answer:
Given lines are L1:x=5,3−αy=−2z and L2:x=α,−1y=2−αz
Here we can rewrite lines L1 as L1:0x−5=3−αy=−2z and the line L2 as L2:0x−α=−1y=2−αz in the standard form.
We know that the condition of the two lines p1x−x1=p2y−y1=p3z−z1 and q1x−x2=q2y−y2=q3z−z2 to be coplanar is given by \left| {\begin{array}{*{20}{c}}
{x - {x_1}}&{y - {y_1}}&{z - {z_1}} \\\
{{p_1}}&{{p_2}}&{{p_3}} \\\
{{q_1}}&{{q_2}}&{{q_3}}
\end{array}} \right| = 0 or \left| {\begin{array}{*{20}{c}}
{x - {x_2}}&{y - {y_2}}&{z - {z_2}} \\\
{{p_1}}&{{p_2}}&{{p_3}} \\\
{{q_1}}&{{q_2}}&{{q_3}}
\end{array}} \right| = 0.
Since the given lines L1 and L2are coplanar, according to the condition of coplanarity we have
\Rightarrow x - 5\left[ {\left( {3 - \alpha } \right)\left( {2 - \alpha } \right) - \left( { - 2} \right)\left( { - 1} \right)} \right] - 0\left[ {y\left( {2 - \alpha } \right) - \left( { - 1} \right)\left( z \right)} \right] + 0\left[ {y\left( { - 2} \right) - z\left( { - 1} \right)} \right] = 0 \\
\Rightarrow x - 5\left[ {\left( {{\alpha ^2} - 5\alpha + 6} \right) - 2} \right] - 0 + 0 = 0 \\
\Rightarrow x - 5\left( {{\alpha ^2} - 5\alpha + 6 - 2} \right) = 0 \\
\Rightarrow {\alpha ^2} - 5\alpha + 4 = \dfrac{0}{{x - 5}} \\
\Rightarrow {\alpha ^2} - 5\alpha + 4 = 0 \\
\Rightarrow {\alpha ^2} - \alpha - 4\alpha + 4 = 0 \\
\Rightarrow \alpha \left( {\alpha - 1} \right) - 4\left( {\alpha - 1} \right) = 0 \\
\Rightarrow \left( {\alpha - 1} \right)\left( {\alpha - 4} \right) = 0 \\
\therefore \alpha = 1,{\text{4}} \\