Solveeit Logo

Question

Question: Two lines \[{L_1}:x - 5 = \dfrac{y}{{3 - \alpha }} = \dfrac{z}{{ - 2}}\] and \({L_2}:x - \alpha = \d...

Two lines L1:x5=y3α=z2{L_1}:x - 5 = \dfrac{y}{{3 - \alpha }} = \dfrac{z}{{ - 2}} and L2:xα=y1=z2α{L_2}:x - \alpha = \dfrac{y}{{ - 1}} = \dfrac{z}{{2 - \alpha }} are coplanar. Then α\alpha can take value(s)?

Explanation

Solution

Coplanarity of two lines can be expressed using determinants. The Cartesian coordinates and direction ratios are obtained by writing the given equations in the standard form. Solving we get possible value(s) forα\alpha .

Formula used: Two lines L1:xx1a1=yy1b1=zz1c1{L_1}:\dfrac{{x - {x_1}}}{{{a_1}}} = \dfrac{{y - {y_1}}}{{{b_1}}} = \dfrac{{{z_{}} - {z_1}}}{{{c_1}}} and L2:xx2a2=yy2b2=zz2c2{L_2}:\dfrac{{x - {x_2}}}{{{a_2}}} = \dfrac{{y - {y_2}}}{{{b_2}}} = \dfrac{{{z_{}} - {z_2}}}{{{c_2}}} are coplanar (lie on the same plane) if and only if \det \left( {\begin{array}{*{20}{c}} {{x_2} - {x_1}}&{{y_2} - {y_1}}&{{z_2} - {z_1}} \\\ {{a_1}}&{{b_1}}&{{c_1}} \\\ {{a_2}}&{{b_2}}&{{c_2}} \end{array}} \right) = 0
Here, xi{x_i},yi{y_i},zi{z_i} are the Cartesian coordinates (of a point in the line) and ai,bi,ci{a_i},{b_i},{c_i} are the direction ratios of the line and det\det represents determinant of the particular matrix.
\det \left( {\begin{array}{*{20}{c}} {{a_{11}}}&{{a_{12}}}&{{a_{13}}} \\\ {{a_{21}}}&{{a_{22}}}&{{a_{23}}} \\\ {{a_{31}}}&{{a_{32}}}&{{a_{33}}} \end{array}} \right) = {a_{11}}[{a_{22}}{a_{33}} - {a_{32}}{a_{23}}] - {a_{12}}[{a_{21}}{a_{33}} - {a_{31}}{a_{23}}] + {a_{13}}[{a_{21}}{a_{32}} - {a_{31}}{a_{22}}]
(using first row)
“if and only if” means it is a necessary and sufficient condition.

Complete step-by-step answer:
Given that
Two lines L1:x5=y3α=z2{L_1}:x - 5 = \dfrac{y}{{3 - \alpha }} = \dfrac{z}{{ - 2}} and L2:xα=y1=z2α{L_2}:x - \alpha = \dfrac{y}{{ - 1}} = \dfrac{z}{{2 - \alpha }} are coplanar.
Line L1:x5=y3α=z2{L_1}:x - 5 = \dfrac{y}{{3 - \alpha }} = \dfrac{z}{{ - 2}} can be written as
L1:x51=y03α=z02{L_1}:\dfrac{{x - 5}}{1} = \dfrac{{y - 0}}{{3 - \alpha }} = \dfrac{{z - 0}}{{ - 2}}
Now it is in the form L1:xx1a1=yy1b1=zz1c1{L_1}:\dfrac{{x - {x_1}}}{{{a_1}}} = \dfrac{{y - {y_1}}}{{{b_1}}} = \dfrac{{{z_{}} - {z_1}}}{{{c_1}}}
with x1=5,y1=0,z1=0,a1=1,b1=3α,c1=2{x_1} = 5,{y_1} = 0,{z_1} = 0,{a_1} = 1,{b_1} = 3 - \alpha ,{c_1} = - 2
Also, line L2:xα=y1=z3α{L_2}:x - \alpha = \dfrac{y}{{ - 1}} = \dfrac{z}{{3 - \alpha }}
can be written as L2:xα1=y01=z02α{L_2}:\dfrac{{x - \alpha }}{1} = \dfrac{{y - 0}}{{ - 1}} = \dfrac{{z - 0}}{{2 - \alpha }}
Now it is in the form L2:xx2a2=yy2b2=zz2c2{L_2}:\dfrac{{x - {x_2}}}{{{a_2}}} = \dfrac{{y - {y_2}}}{{{b_2}}} = \dfrac{{{z_{}} - {z_2}}}{{{c_2}}}
with x2=α,y2=0,z2=0,a2=1,b2=1,c2=2α{x_2} = \alpha ,{y_2} = 0,{z_2} = 0,{a_2} = 1,{b_2} = - 1,{c_2} = 2 - \alpha
L1{L_1} and L2{L_2} are coplanar
\Rightarrow \det \left( {\begin{array}{*{20}{c}} {{x_2} - {x_1}}&{{y_2} - {y_1}}&{{z_2} - {z_1}} \\\ {{a_1}}&{{b_1}}&{{c_1}} \\\ {{a_2}}&{{b_2}}&{{c_2}} \end{array}} \right) = 0
Substituting the values
\det \left( {\begin{array}{*{20}{c}} {\alpha - 5}&0&0 \\\ 1&{3 - \alpha }&{ - 2} \\\ 1&{ - 1}&{2 - \alpha } \end{array}} \right) = 0
Calculating determinant using first row,
(α5)[(3α)(2α)(2×1)]0[1(2α)(1×2)]+0[(1×1)1(3α)]=0(\alpha - 5)[(3 - \alpha )(2 - \alpha ) - ( - 2 \times - 1)] - 0[1(2 - \alpha ) - (1 \times - 2)] + 0[(1 \times - 1) - 1(3 - \alpha )] = 0
(α5)[(3α)(2α)(2×1)]=0(\alpha - 5)[(3 - \alpha )(2 - \alpha ) - ( - 2 \times - 1)] = 0 (since multiplying zero with something results zero)
Simplifying the terms in the bracket,
(α5)[(63α2α+α2)2]=0\Rightarrow (\alpha - 5)[(6 - 3\alpha - 2\alpha + \alpha _{}^2) - 2] = 0
(α5)[65α+α22]=0\Rightarrow (\alpha - 5)[6 - 5\alpha + \alpha _{}^2 - 2] = 0
Rearranging the terms,
(α5)[α25α+4]=0(\alpha - 5)[\alpha _{}^2 - 5\alpha + 4] = 0
Product of two terms equal to zero implies either one is zero.
α5=0\alpha - 5 = 0 or α25α+4=0\alpha _{}^2 - 5\alpha + 4 = 0
α=5\Rightarrow \alpha = 5 or (α1)(α4)=0(\alpha - 1)(\alpha - 4) = 0
Since (α1)(α4)=α24αα+4=α25α+4(\alpha - 1)(\alpha - 4) = \alpha _{}^2 - 4\alpha - \alpha + 4 = \alpha _{}^2 - 5\alpha + 4
Product of two terms equal to zero implies either one is zero,
α=5\Rightarrow \alpha = 5 or α1=0\alpha - 1 = 0 or α4=0\alpha - 4 = 0
α=5\Rightarrow \alpha = 5 or α=1\alpha = 1 or α=4\alpha = 4
Therefore, for the lines L1{L_1} and L2{L_2} to be parallel, α\alpha can take values 1,41,4 and 55.

Note: If a directed line LL passes through the origin and makes angles α,β,γ\alpha ,\beta ,\gamma with the x,y,zx,y,z axes, then cosα,cosβ,cosγ\cos \alpha ,\cos \beta ,\cos \gamma are called direction cosines of LL. If l,m,nl,m,n are the direction cosines of the line equation of the line is xx1l=yy1m=zz1n\dfrac{{x - {x_1}}}{l} = \dfrac{{y - {y_1}}}{m} = \dfrac{{z - {z_1}}}{n}. We can use either Cartesian form or vector form to express lines.