Solveeit Logo

Question

Question: Two lines drawn through the point P(4, 0) divide the area bounded by the curves \(y = \sqrt { 2 } \...

Two lines drawn through the point P(4, 0) divide the area bounded by the curves y=2sinπx4y = \sqrt { 2 } \sin \frac { \pi x } { 4 } and x-axis , between the lines x = 2, and x = 4, in to three equal parts. Sum of the slopes of the drawn lines is equal to

A

22π- \frac { 2 \sqrt { 2 } } { \pi }

B

2π- \frac { \sqrt { 2 } } { \pi }

C

2π- \frac { 2 } { \pi }

D

42π- \frac { 4 \sqrt { 2 } } { \pi }

Answer

22π- \frac { 2 \sqrt { 2 } } { \pi }

Explanation

Solution

Area bounded by y=2sinπx4y = \sqrt { 2 } \cdot \sin \frac { \pi x } { 4 } and x-axis between the lines x = 2 and x = 4,

Δ=224sinπx4dx=42πcosπx424\Delta = \sqrt { 2 } \int _ { 2 } ^ { 4 } \sin \frac { \pi x } { 4 } d x = - \left. \frac { 4 \sqrt { 2 } } { \pi } \cdot \cos \frac { \pi x } { 4 } \right| _ { 2 } ^ { 4 }

=42π= \frac { 4 \sqrt { 2 } } { \pi } sq. units.

Let the drawn lines are L1 : y − m1(x − 4) = 0 and L2 : y − m2(x − 4) = 0, meeting the line x = 2 at the points A and B respectively.

Clearly A ≡ (2, -2m,), B ≡ (2, -2m2) Now ∆ACD = Δ3\frac { \Delta } { 3 }

423π=12\frac { 4 \sqrt { 2 } } { 3 \pi } = \frac { 1 } { 2 } .2. − 2m1

⇒ m1 = 223π- \frac { 2 \sqrt { 2 } } { 3 \pi } Also ABCD = 2Δ3\frac { 2 \Delta } { 3 }

823π=12\frac { 8 \sqrt { 2 } } { 3 \pi } = \frac { 1 } { 2 }.2.−2m2

⇒ m2 = −423π\frac { 4 \sqrt { 2 } } { 3 \pi }. Required sum = 22π- \frac { 2 \sqrt { 2 } } { \pi }