Solveeit Logo

Question

Physics Question on Wave optics

Two light waves of intensities I1'I_1' and I2'I_2' having same frequency pass through same medium at a time in same direction and interfere. The sum of the minimum and maximum intensities is

A

(I1+I2)(I_1 + I_2)

B

2(I1+I2)2 (I_1 + I_2)

C

(I1+I2)(\sqrt{I_1} + \sqrt{I_2})

D

(I1I2)(\sqrt{I_1} - \sqrt{I_2})

Answer

2(I1+I2)2 (I_1 + I_2)

Explanation

Solution

We know that,
Imax=(a1+a2)2...(i)I_{\max } =\left(a_{1}+a_{2}\right)^{2} \,\,\,\,\,\,\,\, ...(i)
Imin=(a1a2)2...(ii)I_{\min } =\left(a_{1}-a_{2}\right)^{2} \,\,\,\,\,\,\,\,... (ii)
On adding Eqs. (i) and (ii), we get
Imax+Imin=(a1+a2)2+(a1a2)2I_{\max }+I_{\min }=\left(a_{1}+a_{2}\right)^{2}+\left(a_{1}-a_{2}\right)^{2}
Imax+Imin=a12+a22+2a1a2+a12+a222a1a2I_{\max }+I_{\min }=a_{1}^{2}+a_{2}^{2}+2 a_{1} a_{2}+a_{1}^{2}+a_{2}^{2}-2 a_{1} a_{2}
Imax+Imin=2(a12+a22)I_{\max }+I_{\min }=2\left(a_{1}^{2}+a_{2}^{2}\right)
But la2\,\,\,\,\, l \propto a^{2}
Therefore, Imax+Imin=2(I1+I2)I_{\max }+I_{\min }=2( I_{1}+I_{2})