Solveeit Logo

Question

Question: Two interfering waves having intensities x and y meets a point with time difference 3T/2. What will ...

Two interfering waves having intensities x and y meets a point with time difference 3T/2. What will be the resultant intensity at that point

A

(x+y)(\sqrt{x} + \sqrt{y})

B

(x+y+xy)(\sqrt{x} + \sqrt{y} + \sqrt{xy})

C

x+y+2xyx + y + 2\sqrt{xy}

D

x+y2xy\frac{x + y}{2xy}

Answer

x+y+2xyx + y + 2\sqrt{xy}

Explanation

Solution

Time difference T.D. =T2π×φ= \frac{T}{2\pi} \times \varphi3T2=T2π×φ\frac{3T}{2} = \frac{T}{2\pi} \times \varphiφ=3π;\varphi = 3\pi; This is the condition of constructive interference.

So resultant intensity

IR=(I1+I2)2=(x+y)2=x+y+2xy.I_{R} = (\sqrt{I_{1}} + \sqrt{I_{2}})^{2} = (\sqrt{x} + \sqrt{y})^{2} = x + y + 2\sqrt{xy}.