Question
Mathematics Question on Random Experiments
Two integers x and y are chosen with replacement from the set 0,1,2,3,…,10. Then the probability that ∣x−y∣>5 is:
12130
12162
12160
12131
12130
Solution
The total number of outcomes when choosing x and y with replacement from the set 0,1,2,…,10 is:
11×11=121
To satisfy ∣x−y∣>5, we need x−y>5 or x−y<−5. We count the favorable pairs by analyzing each possible value of x:
If x=0, y can be 6, 7, 8, 9, 10 (5 values)
If x=1, y can be 7, 8, 9, 10 (4 values)
If x=2, y can be 8, 9, 10 (3 values)
If x=3, y can be 9, 10 (2 values)
If x=4, y can be 10 (1 value)
If x=5, there are no possible values of y
If x=6, y=0 (1 value)
If x=7, y=0,1 (2 values)
If x=8, y=0,1,2 (3 values)
If x=9, y=0,1,2,3 (4 values)
If x=10, y=0,1,2,3,4 (5 values)
Adding these values, the total number of favorable outcomes is:
5+4+3+2+1+1+1+2+3+4+5=30
The required probability is:
12130
Final Answer: 12130