Solveeit Logo

Question

Mathematics Question on Random Experiments

Two integers xx and yy are chosen with replacement from the set 0,1,2,3,,10\\{0, 1, 2, 3, \ldots, 10\\}. Then the probability that xy>5|x - y| > 5 is:

A

30121\frac{30}{121}

B

62121\frac{62}{121}

C

60121\frac{60}{121}

D

31121\frac{31}{121}

Answer

30121\frac{30}{121}

Explanation

Solution

The total number of outcomes when choosing xx and yy with replacement from the set 0,1,2,,10\\{0, 1, 2, \dots, 10\\} is:
11×11=12111 \times 11 = 121
To satisfy xy>5|x - y| > 5, we need xy>5x - y > 5 or xy<5x - y < -5. We count the favorable pairs by analyzing each possible value of xx:
If x=0x = 0, yy can be 6, 7, 8, 9, 10 (5 values)
If x=1x = 1, yy can be 7, 8, 9, 10 (4 values)
If x=2x = 2, yy can be 8, 9, 10 (3 values)
If x=3x = 3, yy can be 9, 10 (2 values)
If x=4x = 4, yy can be 10 (1 value)
If x=5x = 5, there are no possible values of yy
If x=6x = 6, y=0y = 0 (1 value)
If x=7x = 7, y=0,1y = 0, 1 (2 values)
If x=8x = 8, y=0,1,2y = 0, 1, 2 (3 values)
If x=9x = 9, y=0,1,2,3y = 0, 1, 2, 3 (4 values)
If x=10x = 10, y=0,1,2,3,4y = 0, 1, 2, 3, 4 (5 values)
Adding these values, the total number of favorable outcomes is:
5+4+3+2+1+1+1+2+3+4+5=305 + 4 + 3 + 2 + 1 + 1 + 1 + 2 + 3 + 4 + 5 = 30
The required probability is:
30121\frac{30}{121}
Final Answer: 30121\frac{30}{121}