Solveeit Logo

Question

Question: Two infinitely long uniformly charged rods are joined as shown in the figure. The linear charge dens...

Two infinitely long uniformly charged rods are joined as shown in the figure. The linear charge density on the rod is λ=QL\lambda =\dfrac{Q}{L}, Q is the total charge on each rod and L is the length of each rod. Find the electric field in vector form at point P due to the two rods.

Explanation

Solution

Understand how uniformly charged rod of some length produces an electric field at point P that is at a perpendicular distance d from the rod. Apply this formula for both the given rods and calculate the net electric field at point P.

Formula used:
Ex=λ4πε0d(sinθ1+sinθ2){{E}_{x}}=\dfrac{\lambda }{4\pi {{\varepsilon }_{0}}d}\left( \sin {{\theta }_{1}}+\sin {{\theta }_{2}} \right)
Ey=λ4πε0d(cosθ1cosθ2){{E}_{y}}=\dfrac{\lambda }{4\pi {{\varepsilon }_{0}}d}\left( \cos {{\theta }_{1}}-\cos {{\theta }_{2}} \right)

Complete step by step answer:
Let them understand the electric field due to a charged finite rod.
Suppose a uniformly charged rod of linear charge density λ\lambda is placed vertically as shown. Then the electric field at a point P that is at a perpendicular distance d from the rod is given as:
Ex=λ4πε0d(sinθ1+sinθ2){{E}_{x}}=\dfrac{\lambda }{4\pi {{\varepsilon }_{0}}d}\left( \sin {{\theta }_{1}}+\sin {{\theta }_{2}} \right)
And
Ey=λ4πε0d(cosθ1cosθ2){{E}_{y}}=\dfrac{\lambda }{4\pi {{\varepsilon }_{0}}d}\left( \cos {{\theta }_{1}}-\cos {{\theta }_{2}} \right)

Here, Ex{{E}_{x}} is the horizontal component of the electric field and Ey{{E}_{y}} is the vertical component of the electric field.
θ1{{\theta }_{1}} and θ2{{\theta }_{2}} are the angles as shown in the figure.
Therefore, in vector form the electric field will be E=λ4πε0d(sinθ1+sinθ2)i^+λ4πε0d(cosθ1cosθ2)j^E=\dfrac{\lambda }{4\pi {{\varepsilon }_{0}}d}\left( \sin {{\theta }_{1}}+\sin {{\theta }_{2}} \right)\widehat{i}+\dfrac{\lambda }{4\pi {{\varepsilon }_{0}}d}\left( \cos {{\theta }_{1}}-\cos {{\theta }_{2}} \right)\widehat{j}
Let us now find the net electric field to the two rods as per arrangements shown in the figure of the question.
Let us find the electric field (E1{{E}_{1}}) due to the vertical rod. For this rod, the perpendicular distance of the point P is dcos45=d2d\cos 45=\dfrac{d}{\sqrt{2}}.

Since the rod is going up till infinity, θ190{{\theta }_{1}}\approx {{90}^{\circ }}.
From the figure, θ2=45{{\theta }_{2}}={{45}^{\circ }}.
Therefore,
E1=λ4πε0d2(sin90+sin45)i^+λ4πε0d2(cos90cos45)j^\Rightarrow {{E}_{1}}=\dfrac{\lambda }{4\pi {{\varepsilon }_{0}}\dfrac{d}{\sqrt{2}}}\left( \sin 90+\sin 45 \right)\widehat{i}+\dfrac{\lambda }{4\pi {{\varepsilon }_{0}}\dfrac{d}{\sqrt{2}}}\left( \cos 90-\cos 45 \right)\widehat{j}
E1=2λ4πε0d(1+12)i^+2λ4πε0d(012)j^\Rightarrow {{E}_{1}}=\dfrac{\sqrt{2}\lambda }{4\pi {{\varepsilon }_{0}}d}\left( 1+\dfrac{1}{\sqrt{2}} \right)\widehat{i}+\dfrac{\sqrt{2}\lambda }{4\pi {{\varepsilon }_{0}}d}\left( 0-\dfrac{1}{\sqrt{2}} \right)\widehat{j}
E1=(2+1)λ4πε0di^λ4πε0dj^\Rightarrow {{E}_{1}}=\dfrac{\left( \sqrt{2}+1 \right)\lambda }{4\pi {{\varepsilon }_{0}}d}\widehat{i}-\dfrac{\lambda }{4\pi {{\varepsilon }_{0}}d}\widehat{j}
Let us find the electric field (E2{{E}_{2}}) due to the horizontal rod.

Here, the perpendicular distance is dcos45=d2d\cos 45=\dfrac{d}{\sqrt{2}}.
θ190{{\theta }_{1}}\approx {{90}^{\circ }} and θ2=45{{\theta }_{2}}={{45}^{\circ }}.
However, in this case the horizontal component will be Ex=λ4πε0d(cosθ1cosθ2){{E}_{x}}=\dfrac{\lambda }{4\pi {{\varepsilon }_{0}}d}\left( \cos {{\theta }_{1}}-\cos {{\theta }_{2}} \right).
The vertical component will be Ey=λ4πε0d(sinθ1+sinθ2){{E}_{y}}=\dfrac{\lambda }{4\pi {{\varepsilon }_{0}}d}\left( \sin {{\theta }_{1}}+\sin {{\theta }_{2}} \right).
Since the data is same, we get that
E2=λ4πε0di^+(2+1)λ4πε0dj^{{E}_{2}}=\dfrac{-\lambda }{4\pi {{\varepsilon }_{0}}d}\widehat{i}+\dfrac{\left( \sqrt{2}+1 \right)\lambda }{4\pi {{\varepsilon }_{0}}d}\widehat{j}
The net electric field at point P is E=E1+E1\overrightarrow{E}=\overrightarrow{{{E}_{1}}}+\overrightarrow{{{E}_{1}}}.
E=(2+1)λ4πε0di^λ4πε0dj^+λ4πε0di^+(2+1)λ4πε0dj^\Rightarrow \overrightarrow{E}=\dfrac{\left( \sqrt{2}+1 \right)\lambda }{4\pi {{\varepsilon }_{0}}d}\widehat{i}-\dfrac{\lambda }{4\pi {{\varepsilon }_{0}}d}\widehat{j}+\dfrac{-\lambda }{4\pi {{\varepsilon }_{0}}d}\widehat{i}+\dfrac{\left( \sqrt{2}+1 \right)\lambda }{4\pi {{\varepsilon }_{0}}d}\widehat{j}
E=2λ4πε0di^+2λ4πε0dj^\Rightarrow \overrightarrow{E}=\dfrac{\sqrt{2}\lambda }{4\pi {{\varepsilon }_{0}}d}\widehat{i}+\dfrac{\sqrt{2}\lambda }{4\pi {{\varepsilon }_{0}}d}\widehat{j}
E=2λ4πε0d(i^+j^)\Rightarrow \overrightarrow{E}=\dfrac{\sqrt{2}\lambda }{4\pi {{\varepsilon }_{0}}d}\left( \widehat{i}+\widehat{j} \right)
It is given that λ=QL\lambda =\dfrac{Q}{L}.
E=2Q4πε0dL(i^+j^)\Rightarrow \overrightarrow{E}=\dfrac{\sqrt{2}Q}{4\pi {{\varepsilon }_{0}}dL}\left( \widehat{i}+\widehat{j} \right)
The above expression is the net electric field in vertical form at point P.

Note:
Note that the formula for the horizontal and vertical components of the electric due to a vertical rod is applicable only for a vertical rod. When the rod rotates by 90 degrees, the formula will change.