Solveeit Logo

Question

Question: Two inductors and three resistors are in steady state in given DC circuit. At t = 0, switch S is ope...

Two inductors and three resistors are in steady state in given DC circuit. At t = 0, switch S is opened, net heat loss in the circuit is (L = 1 mH, R = 2 Ω\Omega, ε\varepsilon = 12 V)

Answer

16.5 mJ

Explanation

Solution

In steady state, inductors act as short circuits. When the switch S is closed, the potential at nodes A, B, and C is ε\varepsilon. Currents through resistors: IR=εRI_R = \frac{\varepsilon}{R}, I2R=ε2RI_{2R} = \frac{\varepsilon}{2R}, I3R=ε3RI_{3R} = \frac{\varepsilon}{3R}. Current through L: IL=5ε6RI_L = \frac{5\varepsilon}{6R}. Current through 2L: I2L=ε3RI_{2L} = \frac{\varepsilon}{3R}.

Initial energy stored in inductors: Uinitial=12LIL2+12(2L)I2L2U_{initial} = \frac{1}{2}LI_L^2 + \frac{1}{2}(2L)I_{2L}^2 Uinitial=12L(5ε6R)2+L(ε3R)2U_{initial} = \frac{1}{2}L \left(\frac{5\varepsilon}{6R}\right)^2 + L \left(\frac{\varepsilon}{3R}\right)^2 Uinitial=1124Lε2R2U_{initial} = \frac{11}{24} L \frac{\varepsilon^2}{R^2}

Substitute values: L=1×103 HL = 1 \times 10^{-3} \text{ H}, R=2ΩR = 2 \Omega, ε=12 V\varepsilon = 12 \text{ V}. Uinitial=1124×(1×103)×(12)2(2)2=1124×103×1444=1124×103×36=16.5×103 J=16.5 mJU_{initial} = \frac{11}{24} \times (1 \times 10^{-3}) \times \frac{(12)^2}{(2)^2} = \frac{11}{24} \times 10^{-3} \times \frac{144}{4} = \frac{11}{24} \times 10^{-3} \times 36 = 16.5 \times 10^{-3} \text{ J} = 16.5 \text{ mJ}.

The net heat loss is equal to the initial energy stored.