Question
Physics Question on Oscillations
Two independent harmonic oscillators of equal mass are oscillating about the origin with angular frequencies ?1 and ?2 and have total energies E1 and E2, respectively. The variations of their momenta p with positions x are shown in the figures. If ba=n2 and Ra=n, then the correct equation(s) is(are)
E1?1=E2?2
ω1ω2=n2
?1?2=n2
ω1E1=ω2E2
ω1E1=ω2E2
Solution
Ist harmonic oscillator. b2P2+a2x2=1 P2=b2(1−a2x2) P=aba2−x2 ⇒v=mP v=amba2−x2 Comparing v=ωA2−x2 ω1=amb,A1=a &E1=21mω12A12 IInd harmonic oscillation P2+x2=R2 P=R2−x2 v=mP v=m1R2−x2(v=ωA2−x2) Comparingω2=m1,A2=R1 E2=21mω22A22 (1)ω1ω2=ambm1 ⇒ω1ω2=ba (given ba=n2) ω1ω2=n2 (2)ω1E1=21mω1A12 ⇒ω1E1=21m(amb)(a)2 ω1E1=21ab &ω2E2=21m(ω2)A22 ω2E2=21m(m1)(R)2 ω2E2=2R2 the value of ab =n2a2(ba=n2) &R2=n2a(Ra=n) Soω1E1=ω2E2