Solveeit Logo

Question

Physics Question on Oscillations

Two independent harmonic oscillators of equal mass are oscillating about the origin with angular frequencies ?1?_1 and ?2?_2 and have total energies E1E_1 and E2E_2, respectively. The variations of their momenta p with positions x are shown in the figures. If ab=n2\frac{a}{b} = n^{2} and aR=n,\frac{a}{R} = n, then the correct equation(s) is(are)

A

E1?1=E2?2E_1?_1 = E_2?_2

B

ω2ω1=n2\frac{\omega_{2}}{\omega_{1}} = n^{2}

C

?1?2=n2?_1?_2 = n^2

D

E1ω1=E2ω2\frac{E_{1}}{\omega_{1}} = \frac{E^{2}}{\omega_{2}}

Answer

E1ω1=E2ω2\frac{E_{1}}{\omega_{1}} = \frac{E^{2}}{\omega_{2}}

Explanation

Solution

IstI^{st} harmonic oscillator. P2b2+x2a2=1\frac{P^{2}}{b^{2}}+\frac{x^{2}}{a^{2}} = 1 P2=b2(1x2a2)P^{2} = b^{2} \left(1-\frac{x^{2}}{a^{2}}\right) P=baa2x2P = \frac{b}{a} \sqrt{a^{2}-x^{2}} v=Pm\Rightarrow v = \frac{P}{m} v=bama2x2v = \frac{b}{am} \sqrt{a^{2}-x^{2}} Comparing v=ωA2x2\quad v = \omega\sqrt{A^{2}-x^{2}} ω1=bam,A1=a\omega_{1} = \frac{b}{am}, A_{1} = a &E1=12mω12A12\& \,E_{1} = \frac{1}{2} m \omega^{2}_{1} A^{2}_{1} IIndII^{nd} harmonic oscillation P2+x2=R2P^{2} + x^{2} = R^{2} P=R2x2P = \sqrt{R^{2}-x^{2}} v=Pmv = \frac{P}{m} v=1mR2x2(v=ωA2x2)v = \frac{1}{m} \sqrt{R^{2}-x^{2}}\quad\quad\left(v = \omega\sqrt{A^{2}-x^{2}}\right) Comparingω2=1m,A2=R1\quad\omega_{2} = \frac{1}{m}, A_{2} = R_{1} E2=12mω22A22E_{2} = \frac{1}{2} m \,\omega^{2}_{2} A^{2}_{2} (1)ω2ω1=1mbam\left(1\right)\quad \frac{\omega_{2}}{\omega_{1}} = \frac{\frac{1}{m}}{\frac{b}{am}} ω2ω1=ab\Rightarrow\quad \frac{\omega_{2}}{\omega_{1}} = \frac{a}{b}\quad\quad (given ab=n2\frac{a}{b} = n^{2}) ω2ω1=n2\frac{\omega_{2}}{\omega_{1}} = n^{2} (2)E1ω1=12mω1A12\left(2\right)\quad \frac{E_{1}}{\omega_{1}} = \frac{1}{2} m\omega_{1} A^{2}_{1} E1ω1=12m(bam)(a)2\Rightarrow\quad \frac{E_{1}}{\omega_{1}} = \frac{1}{2} m \left(\frac{b}{am}\right) \left(a\right)^{2} E1ω1=12ab\frac{E_{1}}{\omega_{1}} = \frac{1}{2} ab &E2ω2=12m(ω2)A22\&\quad \frac{E_{2}}{\omega_{2}} = \frac{1}{2} m \left(\omega_{2}\right) A^{2}_{2} E2ω2=12m(1m)(R)2\frac{E_{2}}{\omega^{2}} = \frac{1}{2} m \left(\frac{1}{m}\right) \left(R\right)^{2} E2ω2=R22\frac{E_{2}}{\omega_{2}} = \frac{R^{2}}{2} the value of ab =a2n2(ab=n2)= \frac{a^{2}}{n^{2}} \left(\frac{a}{b} = n^{2}\right) &R2=an2(aR=n)\& \quad R^{2} = \frac{a}{n^{2}} \left(\frac{a}{R} = n\right) SoE1ω1=E2ω2\quad \frac{E_{1}}{\omega_{1}} = \frac{E_{2}}{\omega_{2}}