Solveeit Logo

Question

Physics Question on Magnetic Field Due To A Current Element, Biot-Savart Law

Two identical wires AA and BB, each of length ll, carry the same current II. Wire AA is bent into a circle of radius RR and wire BB is bent to form a square of side aa. If BAB_A and BBB_B are the values of magnetic field at the centres of the circle and square respectively, then the ratio BABB\frac{B_A}{B_B} is :

A

π28\frac{\pi^2}{8}

B

π2162\frac{\pi^2}{16\sqrt{2}}

C

π216\frac{\pi^2}{16}

D

π282\frac{\pi^2}{8\sqrt{2}}

Answer

π282\frac{\pi^2}{8\sqrt{2}}

Explanation

Solution

ForA2πR=\frac{For A}{2 \pi R = \,\ell}
R=2πR = \frac{\ell}{2\pi}
BA=μ0I2R=μ0I2×2πB_{A} = \frac{\mu_{0} I }{2R} = \frac{\mu_{0}I}{2 \times\frac{\ell}{2\pi}}
BA=μ0πIB_{A} =\frac{\mu_{0} \pi I}{\ell}
ForB4a=\frac{For B}{4a =\ell}
a=4a = \frac{\ell}{4}
BB=4×μ0I42π8(4)2+4(8)2=4μ0Iπ.2l4B_{B} = 4 \times \frac{\mu_{0}I \frac{\ell}{4}}{2 \pi \frac{\ell}{8} \sqrt{\left(\frac{\ell}{4}\right)^{2}+4 \left(\frac{\ell}{8}\right)^{2}}} = \frac{4\mu_{0}I}{\pi.\sqrt{2} \frac{l\\\ell}{4}}
BB=16μ0I2πB_{B} = \frac{16\mu_{0}I}{\sqrt{2} \pi \ell}
BABB=16μ0I2π=2π216=π282\frac{B_{A}}{B_{B}} = \frac{\ell}{\frac{16 \mu_{0}I}{\sqrt{2} \pi \ell}} = \frac{\sqrt{2} \pi^{2}}{16} = \frac{\pi^{2}}{8\sqrt{2}}