Solveeit Logo

Question

Question: Two identical thin rings each of radius R, are coaxially placed a distance R apart. If Q<sub>1</sub>...

Two identical thin rings each of radius R, are coaxially placed a distance R apart. If Q1 and Q2 are respectively the charges uniformly spread on the two rings, the work done in moving a charge q from the centre of one ring to that of the other is

A

Zero

B

q(Q1Q2)(21)4πε0R2\frac{q(Q_{1} - Q_{2})(\sqrt{2} - 1)}{4\pi\varepsilon_{0}R\sqrt{2}}

C

q(Q1+Q2)24πε0R\frac{q(Q_{1} + Q_{2})\sqrt{2}}{4\pi\varepsilon_{0}R}

D

q(Q1Q2)(21)4πε0R2\frac{q\left( \frac{Q_{1}}{Q_{2}} \right)(\sqrt{2} - 1)}{4\pi\varepsilon_{0}R\sqrt{2}}

Answer

q(Q1Q2)(21)4πε0R2\frac{q(Q_{1} - Q_{2})(\sqrt{2} - 1)}{4\pi\varepsilon_{0}R\sqrt{2}}

Explanation

Solution

Potential at the centre of first ring

VA=Q14πε0R+Q24πε0R2+R2V_{A} = \frac{Q_{1}}{4\pi\varepsilon_{0}R} + \frac{Q_{2}}{4\pi\varepsilon_{0}\sqrt{R^{2} + R^{2}}}

Potential at the centre of second ring

VB=Q24πε0R+Q14πε0R2+R2V_{B} = \frac{Q_{2}}{4\pi\varepsilon_{0}R} + \frac{Q_{1}}{4\pi\varepsilon_{0}\sqrt{R^{2} + R^{2}}}Potential difference between the two centres VAVB=(21)(Q1Q2)4πε0R2V_{A} - V_{B} = \frac{(\sqrt{2} - 1)(Q_{1} - Q_{2})}{4\pi\varepsilon_{0}R\sqrt{2}}

∴WorkdoneW=q(21)(Q1Q2)4πε0R2W = \frac{q(\sqrt{2} - 1)(Q_{1} - Q_{2})}{4\pi\varepsilon_{0}R\sqrt{2}}