Solveeit Logo

Question

Physics Question on Gravitational Potential Energy

Two identical thin rings each of radius RR are coaxially placed at a distance RR. If mass of rings are m1m_{1}, m2m_{2} respectively, then the work done in moving a mass mm from centre of one ring to that of the other is

A

Gm(m1+m2)R(2+1)\frac{Gm\left(m_{1}+m_{2}\right)}{R}\left(\sqrt{2}+1\right)

B

Gm(m1m2)2R(21)\frac{Gm\left(m_{1}-m_{2}\right)}{\sqrt{2}R}\left(\sqrt{2}-1\right)

C

Gm2R(m1+m2)\frac{Gm\sqrt{2}}{R}\left(m_{1}+m_{2}\right)

D

zero

Answer

Gm(m1m2)2R(21)\frac{Gm\left(m_{1}-m_{2}\right)}{\sqrt{2}R}\left(\sqrt{2}-1\right)

Explanation

Solution

The situation is as shown in the figure. Gravitational potential at the centre of the first ring (i.e., at O1O_1) is V1=Gm1RGM2R2+R2V_{1}=\frac{Gm_{1}}{R}-\frac{GM_{2}}{\sqrt{R^{2}+R^{2}}} =Gm1RGm22R=-\frac{Gm_{1}}{R}-\frac{Gm_{2}}{\sqrt{2}R} Gravitational potential at the centre of the second ring (i.e.atO2)\left(i.e. at O_{2}\right) is V2=Gm2RGm1R2+R2V_{2}=-\frac{Gm_{2}}{R}-\frac{Gm_{1}}{\sqrt{R^{2}+R^{2}}} =Gm2RGm12R=-\frac{Gm_{2}}{R}-\frac{Gm_{1}}{\sqrt{2}R} Work done in moving a mass mm from O1O_{1} to O2O_{2} is W=m(V2V1)W=m\left(V_{2}-V_{1}\right) =m[Gm2RGm12R(Gm1RGm22R)]=m\left[-\frac{Gm_{2}}{R}-\frac{Gm_{1}}{\sqrt{2}R}-\left(-\frac{Gm_{1}}{R}-\frac{Gm_{2}}{\sqrt{2}R}\right)\right] =m[Gm2RGm12R+Gm1R+Gm22R]=m\left[-\frac{Gm_{2}}{R}-\frac{Gm_{1}}{\sqrt{2}R}+\frac{Gm_{1}}{R}+\frac{Gm_{2}}{\sqrt{2}R}\right] =GmR[2m2m1+2m1+m22]=\frac{Gm}{R}\left[\frac{-\sqrt{2}m_{2}-m_{1}+\sqrt{2}m_{1}+m_{2}}{\sqrt{2}}\right] =Gm2R[2(m1m2)(m1m2)=\frac{Gm}{\sqrt{2}R}[\sqrt{2}\left(m_{1}-m_{2}\right)-\left(m_{1}-m_{2}\right) =Gm(m1m2)2R(21)=\frac{Gm\left(m_{1}-m_{2}\right)}{\sqrt{2}R}\left(\sqrt{2}-1\right)