Solveeit Logo

Question

Physics Question on Electrostatic potential

Two identical thin rings, each of radius 10cm10\,cm carrying charges 10C10\,C and 5C5\,C are coaxially placed at a distance 10cm10\,cm apart. The work done in moving a charge qq from the centre of the first ring to that of the second is

A

q8πε0(2+12)\frac{q}{8\pi\varepsilon_{0}} \left(\frac{\sqrt{2}+1}{\sqrt{2}}\right)

B

q8πε0(212)\frac{q}{8\pi\varepsilon_{0}} \left(\frac{\sqrt{2}-1}{\sqrt{2}}\right)

C

q4πε0(2+12)\frac{q}{4\pi\varepsilon_{0}} \left(\frac{\sqrt{2}+1}{\sqrt{2}}\right)

D

q4πε0(212)\frac{q}{4\pi\varepsilon_{0}} \left(\frac{\sqrt{2}-1}{\sqrt{2}}\right)

Answer

q8πε0(212)\frac{q}{8\pi\varepsilon_{0}} \left(\frac{\sqrt{2}-1}{\sqrt{2}}\right)

Explanation

Solution

Work done W=q(V2V1)W=q\left(V_{2}-V_{1}\right)

V1=Q14πε0R1+Q24πε0R2V_{1} =\frac{Q_{1}}{4 \pi \varepsilon_{0} R_{1}}+\frac{Q_{2}}{4 \pi \varepsilon_{0} R \sqrt{2}}
=104πε0×10+54πε0102=\frac{10}{4 \pi \varepsilon_{0} \times 10}+\frac{5}{4 \pi \varepsilon_{0} 10 \sqrt{2}}
V2=Q24πε0R+Q14πε0R2V_{2} =\frac{Q_{2}}{4 \pi \varepsilon_{0} R}+\frac{Q_{1}}{4 \pi \varepsilon_{0} R \sqrt{2}}
=54πε0×10+104πε102=\frac{5}{4 \pi \varepsilon_{0} \times 10}+\frac{10}{4 \pi \varepsilon 10 \sqrt{2}}
V2V1=54πε010254πε0×10V_{2}-V_{1} =\frac{5}{4 \pi \varepsilon_{0} 10 \sqrt{2}}-\frac{5}{4 \pi \varepsilon_{0} \times 10}
=54πε010[121]=18πε0[212]=\frac{5}{4 \pi \varepsilon_{0} 10}\left[\frac{1}{\sqrt{2}}-1\right]=\frac{1}{8 \pi \varepsilon_{0}}\left[\frac{\sqrt{2}-1}{\sqrt{2}}\right]
W=q8πε0[212]\therefore W =\frac{q}{8 \pi \varepsilon_{0}}\left[\frac{\sqrt{2}-1}{\sqrt{2}}\right]