Solveeit Logo

Question

Question: Two identical steel cubes each of mass 50 g and side 1 cm collide head on face to face with a speed ...

Two identical steel cubes each of mass 50 g and side 1 cm collide head on face to face with a speed of 10 ms110 \mathrm {~ms} ^ { - 1 }. The maximum compression of each cube is:

(Ysteel =2×1011Nm2Y _ { \text {steel } } = 2 \times 10 ^ { 11 } \mathrm { Nm } ^ { 2 })

A

5×105 m5 \times 10 ^ { - 5 } \mathrm {~m}

B

5×106 m5 \times 10 ^ { - 6 } \mathrm {~m}

C

D

Answer

Explanation

Solution

Here, m = 50 g = 50×103 kg50 \times 10 ^ { - 3 } \mathrm {~kg}

Y=2×1011Nm2\mathrm { Y } = 2 \times 10 ^ { 11 } \mathrm { Nm } ^ { - 2 }

According to Hooke’s law

or F=YAΔLLF = \frac { Y A \Delta L } { L } ……(i)

Where A is the surface area and L is the length of the cube.

If k is the compression of the cube, then

F=kΔL\mathrm { F } = \mathrm { k } \Delta \mathrm { L }

(Using (i))

K=YAL=YL\Rightarrow \mathrm { K } = \frac { \mathrm { YA } } { \mathrm { L } } = \mathrm { YL } …(ii)

Initial kinetic energy

= 2×12mv2=mv22 \times \frac { 1 } { 2 } m v ^ { 2 } = m v ^ { 2 }

Final potential energy

=2×12k(ΔL)2=k(ΔL)2= 2 \times \frac { 1 } { 2 } \mathrm { k } ( \Delta \mathrm { L } ) ^ { 2 } = \mathrm { k } ( \Delta \mathrm { L } ) ^ { 2 }

According to the mechanical energy conservation

(Using (ii))

=52×1013=2.5×1013=5×107 m= \sqrt { \frac { 5 } { 2 } \times 10 ^ { - 13 } } = \sqrt { 2.5 \times 10 ^ { - 13 } } = 5 \times 10 ^ { - 7 } \mathrm {~m}