Solveeit Logo

Question

Question: Two identical springs of spring constant k are attached to a block of mass m and to fixed supports a...

Two identical springs of spring constant k are attached to a block of mass m and to fixed supports as shown in the figure. The time period of oscillation is

A

B

2π m2k2 \pi \sqrt { \frac { \mathrm {~m} } { 2 \mathrm { k } } }

C

2π2 mk2 \pi \sqrt { \frac { 2 \mathrm {~m} } { \mathrm { k } } }

D

πm2k\pi \sqrt { \frac { \mathrm { m } } { 2 \mathrm { k } } }

Answer

2π m2k2 \pi \sqrt { \frac { \mathrm {~m} } { 2 \mathrm { k } } }

Explanation

Solution

Let the mass m be displace by a small distance x to the right from its mean position as shown in figure (2). due to it the spring on the left side gets stretched by a length x while that on the right side gets compressed by the same length.

The forces acting on the mass are

F1=kx\mathrm { F } _ { 1 } = - \mathrm { kx } towards left hand side

F2=kx\mathrm { F } _ { 2 } = - \mathrm { kx } towards left hand side

The net force acting on the mass is

F=F1+F2=2kx\mathrm { F } = \mathrm { F } _ { 1 } + \mathrm { F } _ { 2 } = - 2 \mathrm { kx }

Here, and –ve sign shows that force is towards the mean position therefore the motion executed by the particle is simple harmonic.

Its acceleration is

a=Fm=2kxm\mathrm { a } = \frac { \mathrm { F } } { \mathrm { m } } = - \frac { 2 \mathrm { kx } } { \mathrm { m } } …… (i)

The standard equation of SHM is

a=ω2xa = - \omega ^ { 2 } x ……. (ii)

Comparing (i) and (ii) we get

Time period T=2πω=2π m2k\mathrm { T } = \frac { 2 \pi } { \omega } = 2 \pi \sqrt { \frac { \mathrm {~m} } { 2 \mathrm { k } } }