Solveeit Logo

Question

Physics Question on Moment Of Inertia

Two identical spherical balls of mass MM and radius RR each are stuck on two ends of a rod of length 2R2R and mass MM (see figure). The moment of inertia of the system about the axis passing perpendicularly through the centre of the rod is :

A

15215MR2\frac{152}{15} MR^{2}

B

1715MR2\frac{17}{15} MR^{2}

C

13715MR2\frac{137}{15} MR^{2}

D

20915MR2\frac{209}{15} MR^{2}

Answer

13715MR2\frac{137}{15} MR^{2}

Explanation

Solution

For Ball using parallel axis theorem.
Iball=25MR2+M(2R)2I_{\text{ball}} = \frac{2}{5} MR^{2} +M\left(2R\right)^{2}
=225MR2=\frac{22}{5} MR^{2}
22 Balls so 445MR2\frac{44}{5}MR^{2}
Irod = for rod M(2R)2R=MR23\frac{M\left(2R\right)^{2}}{R} =\frac{MR^{2}}{3}
Isystem=IBall+IrodI_{\text{system}} =I_{\text{Ball}} +I_{\text{rod}}
=445MR2+MR23= \frac{44}{5} MR^{2} + \frac{MR^{2}}{3}
=13715MR2= \frac{137}{15} MR^{2}