Solveeit Logo

Question

Question: Two identical rods each of mass M. and length l are joined in crossed position as shown in figure. T...

Two identical rods each of mass M. and length l are joined in crossed position as shown in figure. The moment of inertia of this system about a bisector would be

A

Ml26\frac { M l ^ { 2 } } { 6 }

B

Ml212\frac { M l ^ { 2 } } { 12 }

C

Ml23\frac { M l ^ { 2 } } { 3 }

D

Ml24\frac { M l ^ { 2 } } { 4 }

Answer

Ml212\frac { M l ^ { 2 } } { 12 }

Explanation

Solution

Moment of inertia of system about an axes which is perpendicular to plane of rods and passing through the common centre of rods Iz=Ml212+Ml212=Ml26I _ { z } = \frac { M l ^ { 2 } } { 12 } + \frac { M l ^ { 2 } } { 12 } = \frac { M l ^ { 2 } } { 6 }

Again from perpendicular axes theorem Iz=IB1+IB2I _ { z } = I _ { B _ { 1 } } + I _ { B _ { 2 } } =2IB1=2IB2=Ml26= 2 I _ { B _ { 1 } } = 2 I _ { B _ { 2 } } = \frac { M l ^ { 2 } } { 6 } [As IB1=IB2I _ { B _ { 1 } } = I _ { B _ { 2 } }]

IB1=IB2=Ml212I _ { B _ { 1 } } = I _ { B _ { 2 } } = \frac { M l ^ { 2 } } { 12 }.