Solveeit Logo

Question

Physics Question on beats

Two identical piano wires have a fundamental frequency of 600600 cycle per second when kept under the same tension. What fractional increase in the tension of one wires will lead to the occurrence of 66 beats per second when both wires vibrate simultaneously?

A

0.01

B

0.02

C

0.03

D

0.04

Answer

0.02

Explanation

Solution

When both the wires vibrate simultaneously, beats per second,
n1±n2=6n_{1}\pm n_2=6
or 12lTm+12lTm=6\frac{1}{2l} \sqrt{\frac{T}{m}}+\frac{1}{2l} \sqrt{\frac{T '}{m}}=6
12lTm12lTm=6\Rightarrow \frac{1}{2l} \sqrt{\frac{T '}{m}}-\frac{1}{2l} \sqrt{\frac{T }{m}}=6
12lTm6006\Rightarrow \frac{1}{2l} \sqrt{\frac{T '}{m}}-600-6
or 12lTm=606(i) \frac{1}{2l} \sqrt{\frac{T ' }{m}}=606\,\,\,\,\ldots\left(i\right)
Given that fundamental frequency
12lTm=600(ii)\Rightarrow \frac{1}{2l} \sqrt{\frac{T }{m}}=600\,\,\,\,\ldots\left(ii\right)
Dividing E (i) by (ii),
12lTm12lTm=606600\frac{\frac{1}{2l}\sqrt{\frac{T'}{m}}}{\frac{1}{2l}\sqrt{\frac{T}{m}}} =\frac{606}{600}
or TT=(1.01)\sqrt{\frac{T '}{T}}=\left(1.01\right)
or TT=(1.02)% \frac{T '}{T}=\left(1.02\right)\%
or T=T(1.02) T '=T\left(1.02\right)
Increase in tension
ΔT=T×1.02T\Delta T ' =T\times1.02-T
=(0.2T)=\left(0.2T\right)
HenceΔT=0.02\Delta T' =0.02