Solveeit Logo

Question

Physics Question on Combination of capacitors

Two identical parallel plate capacitors, of capacitance CC each, have plates of area AA, separated by a distance dd. The space between the plates of the two capacitors, is filled with three dielectrics, of equal thickness and dielectric constants K1,K2K_1, K_2 and K3K_3. The first capacitor is filled as shown in fig. II, and the second one is filled as shown in fig. IIII. If these two modified capacitors are charged by the same potential VV, the ratio of the energy stored in the two, would be (E1E_1 refers to capacitor (I) and E2E_2 to capacitor (II) :

A

E1E2=9K1K2K3(K1+K2+K3)(K2K3+K3K1+K1K2)\frac{E_{1}}{E_{2}} = \frac{9K_{1}K_{2}K_{3}}{\left(K_{1} +K_{2}+K_{3}\right)\left(K_{2}K_{3} + K_{3}K_{1} +K_{1}K_{2}\right)}

B

E1E2=K1K2K3(K1+K2+K3)(K2K3+K3K1+K1K2)\frac{E_{1}}{E_{2}} = \frac{K_{1}K_{2}K_{3}}{\left(K_{1} +K_{2}+K_{3}\right)\left(K_{2}K_{3} + K_{3}K_{1} +K_{1}K_{2}\right)}

C

E1E2=(K1+K2+K3)(K2K3+K3K1+K1K2)K1K2K3\frac{E_{1}}{E_{2}} = \frac{\left(K_{1} +K_{2}+K_{3}\right)\left(K_{2}K_{3} + K_{3}K_{1} +K_{1}K_{2}\right)}{K_{1}K_{2}K_{3}}

D

E1E2=(K1+K2+K3)(K2K3+K3K1+K1K2)9K1K2K3\frac{E_{1}}{E_{2}} = \frac{\left(K_{1} +K_{2}+K_{3}\right)\left(K_{2}K_{3} + K_{3}K_{1} +K_{1}K_{2}\right)}{9K_{1}K_{2}K_{3}}

Answer

E1E2=(K1+K2+K3)(K2K3+K3K1+K1K2)9K1K2K3\frac{E_{1}}{E_{2}} = \frac{\left(K_{1} +K_{2}+K_{3}\right)\left(K_{2}K_{3} + K_{3}K_{1} +K_{1}K_{2}\right)}{9K_{1}K_{2}K_{3}}

Explanation

Solution

C1=3ε0AK1dC_{1} = \frac{3\varepsilon_{0}AK_{1}}{d}