Solveeit Logo

Question

Physics Question on Magnetic Field Due To A Current Element, Biot-Savart Law

Two identical magnetic dipoles of magnetic moment 2Am22\, A\, m^2 are placed at a separation of 2m2\, m with their axes perpendicular to each other in air. The resultant magnetic field at a midpoint between the dipoles is

A

45×105T4 \sqrt{5} \times 10^{-5} \,T

B

25×105T2 \sqrt{5} \times 10^{-5} \,T

C

45×107T4 \sqrt{5} \times 10^{-7} \,T

D

25×107T2 \sqrt{5} \times 10^{-7} \,T

Answer

25×107T2 \sqrt{5} \times 10^{-7} \,T

Explanation

Solution

Let point PP be a midpoint between the dipoles. The point PP will be in end-on position with respect to one dipole and in broad-side on position with respect to the other.
B1=μ04π2m1r13=107×2×2(1)3=4×107T\therefore\quad B_{1} = \frac{\mu_{0}}{4\pi} \frac{2m_{1}}{r^{3}_{1}} = \frac{10^{-7}\times2\times 2}{\left(1\right)^{3}} = 4 \times 10^{-7} \,T
and B2=μ04πm2r23=107×2(1)3=2×107TB_{2} = \frac{\mu _{0}}{4\pi } \frac{m_{2}}{r^{3}_{2}} = \frac{10^{-7}\times 2}{\left(1\right)^{3}} = 2 \times 10^{-7} \,T
As B1B_{1} and B2B_{2} are perpendicular to each other, therefore the resultant magnetic field at point PP is
B=B12+B22=(4×107)2+(2×107)2B = \sqrt{B^{2}_{1} + B^{2}_{2}} = \sqrt{\left(4 \times 10^{-7}\right)^{2} + \left(2 \times 10^{-7}\right)^{2}}
=10716+4=10720=25×107T= 10^{-7} \sqrt{16 + 4} = 10^{-7} \sqrt{20} = 2\sqrt{5} \times 10^{-7}\,T