Solveeit Logo

Question

Physics Question on spherical lenses

Two identical glass (μg=3/2)(\mu_g = 3/2) equiconvex lenses of focal length ff each are kept in contact. The space between the two lenses is filled with water (μw=4/3)(\mu_w = 4/3). The focal length of the combination is

A

f/3f/3

B

ff

C

4f/34f/3

D

3f/43f/4

Answer

3f/43f/4

Explanation

Solution

For equiconvex lens
1A=(321)(1R1R)\frac{1}{A} = \left(\frac{3}{2} -1 \right) \left(\frac{1}{R} - \frac{1}{-R}\right)
1f=12.2R\frac{1}{f } = \frac{1}{2} . \frac{2}{R}
R=fR =f
For 2nd2^{nd} lens 1f2=(431)(1f1f)\frac{1}{f_{2}} = \left(\frac{4}{3} -1\right) \left(\frac{1}{-f} - \frac{1}{-f}\right)
1f2=13×2f\frac{1}{f_{2} } = \frac{1}{3} \times\frac{2}{-f}
f2=3f2f_{2} = \frac{-3 f}{2}
For combination
1f=1f1+1f2+1f3\frac{1}{f'} = \frac{1}{f_{1}} + \frac{1}{f_{2}} + \frac{1}{f_{3}}
=1f+23f+1f= \frac{1}{f} + \frac{2}{-3 f} + \frac{1}{f}
1f=32+33f=43f\frac{1}{f'} = \frac{3-2+3}{3f} = \frac{4}{3f}
f=3f4f' = \frac{3f}{4}