Solveeit Logo

Question

Question: Two identical glass (m<sub>g</sub> = 3/2) equiconvex lenses of focal length f are kept in contact. T...

Two identical glass (mg = 3/2) equiconvex lenses of focal length f are kept in contact. The space between the two lenses is filled with water (mw = 4/3). The focal length of the combination is –

A

f

B

f2\frac { \mathrm { f } } { 2 }

C

D

3f4\frac { 3 \mathrm { f } } { 4 }

Answer

3f4\frac { 3 \mathrm { f } } { 4 }

Explanation

Solution

For water lens

1 F=(431)(1R11R2)\frac { 1 } { \mathrm {~F} ^ { \prime } } = \left( \frac { 4 } { 3 } - 1 \right) \left( \frac { 1 } { \mathrm { R } _ { 1 } } - \frac { 1 } { \mathrm { R } _ { 2 } } \right)

\ 1 F=13(1R1R)\frac { 1 } { \mathrm {~F} ^ { \prime } } = \frac { 1 } { 3 } \left( \frac { 1 } { - \mathrm { R } } - \frac { 1 } { \mathrm { R } } \right) ……(i)

For glass lens

…….(ii)

(i)/(ii)

1 F1f=1312fF=23\frac { \frac { 1 } { \mathrm {~F} ^ { \prime } } } { \frac { 1 } { \mathrm { f } } } = - \frac { \frac { 1 } { 3 } } { \frac { 1 } { 2 } } \Rightarrow \frac { \mathrm { f } } { \mathrm { F } ^ { \prime } } = - \frac { 2 } { 3 }

\ for '3' lens combination.