Solveeit Logo

Question

Question: Two identical containers A and B with frictionless pistons contain the same ideal gas at the same te...

Two identical containers A and B with frictionless pistons contain the same ideal gas at the same temperature and the same volume V. The mass of gas contained in A is and that in B is . The gas in each cylinder is now allowed to expand isothermally to the same final volume 2V. The change in the pressure in A and B are found to be and 1.5 respectively. Then

A

4 = 9

B

2 = 3

C

3 = 2

D

9 = 4

Answer

3 = 2

Explanation

Solution

For gas in A,

\therefore ΔP=P2P1=(RTM)mA(1 V11 V2)\Delta \mathrm { P } = \mathrm { P } _ { 2 } - \mathrm { P } _ { 1 } = \left( \frac { \mathrm { RT } } { \mathrm { M } } \right) \mathrm { m } _ { \mathrm { A } } \left( \frac { 1 } { \mathrm {~V} _ { 1 } } - \frac { 1 } { \mathrm {~V} _ { 2 } } \right)

Putting V1=VV _ { 1 } = V and V2=2 VV _ { 2 } = 2 \mathrm {~V}

We getΔP=(RTM)mA2 V\Delta \mathrm { P } = \left( \frac { \mathrm { RT } } { \mathrm { M } } \right) \frac { \mathrm { m } _ { \mathrm { A } } } { 2 \mathrm {~V} }

Similarly for Gas in B,

From eq. (I) and (II) we get 2 = 3

Hence (3) is the correct.