Solveeit Logo

Question

Question: Two identical capacitors have the same capacitance C. one of them is charged to potential \(V_{1}\)a...

Two identical capacitors have the same capacitance C. one of them is charged to potential V1V_{1}and the other toV2V_{2}. The negative ends of the capacitors are connected together. When the positive ends are also connected, the decrease in energy of the combine system is.

A

C4(V12V22)\frac{C}{4}\left( V_{1}^{2} - V_{2}^{2} \right)

B

C4(V12+V22)\frac{C}{4}\left( V_{1}^{2} + V_{2}^{2} \right)

C

C4(V1V2)2\frac{C}{4}\left( V_{1} - V_{2} \right)^{2}

D

C4(V1+V2)2\frac{C}{4}\left( V_{1} + V_{2} \right)^{2}

Answer

C4(V1V2)2\frac{C}{4}\left( V_{1} - V_{2} \right)^{2}

Explanation

Solution

: Initial energy of the combined system

U1=12CV12+12CV22=C2(V12+V22)U_{1} = \frac{1}{2}CV_{1}^{2} + \frac{1}{2}CV_{2}^{2} = \frac{C}{2}\left( V_{1}^{2} + V_{2}^{2} \right)

On joining the two condensers in parallel, common potential.

V=CV1+CV2C+C=V1+V22V = \frac{CV_{1} + CV_{2}}{C + C} = \frac{V_{1} + V_{2}}{2}

\thereforeFinal energy of the combined system

U2=12(C+C)(V1+V22)2U_{2} = \frac{1}{2}(C + C)\left( \frac{V_{1} + V_{2}}{2} \right)^{2}

Decrease in energy

ΔU=U1U2=12C(V12+V22)12(2C)(V1+V22)\Delta U = U_{1} - U_{2} = \frac{1}{2}C(V_{1}^{2} + V_{2}^{2}) - \frac{1}{2}(2C)\left( \frac{V_{1} + V_{2}}{2} \right)

=C2[2(V12+V22)(V1+V2)2]= \frac{C}{2}\left\lbrack 2\left( V_{1}^{2} + V_{2}^{2} \right) - \left( V_{1} + V_{2} \right)^{2} \right\rbrack

=C4[2V12+2V22V12V222V1V2]=C4(V1V2)2= \frac{C}{4}\left\lbrack 2V_{1}^{2} + 2V_{2}^{2} - V_{1}^{2} - V_{2}^{2} - 2V_{1}V_{2} \right\rbrack = \frac{C}{4}(V_{1} - V_{2})^{2}