Solveeit Logo

Question

Chemistry Question on States of matter

Two gases XX (Mol. Wt. MxM_x) and YY (Mol. Wt. MY;MY>MxM_Y; M_Y > M_x) are at the same temperature T in two different containers. Their root mean square velocities are CXC_X and CYC_Y respectively. If the average kinetic energies per molecule of two gases XX and YY are ExE_x and EYE_Y respectively, then which of the following relation (s) is (are) true?

A

Ex>EYE_x > E_Y

B

Cx>CYC_x > C_Y

C

Ex=EY=32RTE_{x}=E_{Y}=\frac{3}{2}RT

D

Ex=EY=32kBTE_{x}=E_{Y}=\frac{3}{2}k_{B}T

Answer

Ex=EY=32kBTE_{x}=E_{Y}=\frac{3}{2}k_{B}T

Explanation

Solution

Given, molecular weight of X=MXX=M_{X}
Mol. wt. of Y=MYY=M_{Y} and MY>MXM_{Y}>M_{X}
Root mean square velocities =CX=C_{X} and CYC_{Y} respectively
Average KE/molecule =EX=E_{X} and EYE_{Y} respectively
We know that,
Root mean square velocity,
C=3RTM or C1MC=\sqrt{\frac{3 R T}{M}} \text { or } C \propto \sqrt{\frac{1}{M}}
CXCY=MYMX\therefore \frac{C_{X}}{C_{Y}}=\frac{M_{Y}}{M_{X}}
Since MY>MXM_{Y} > M_{X}
CX>CY\therefore C_{X} > C_{Y}
KE molecules =32nRT=\frac{3}{2} n R T
EXEY32RT\Rightarrow E_{X} \neq E_{Y} \neq \frac{3}{2} R T
Further, EX=EY=32kBTE_{X}=E_{Y}=\frac{3}{2} k_{B} T