Solveeit Logo

Question

Question: Two forces, with equal magnitude F, act on a body and the magnitude of the resultant force is \(\fr...

Two forces, with equal magnitude F, act on a body and the magnitude of the resultant force is F3\frac { F } { 3 } . The angle between the two forces is

A

cos1(1718)\cos ^ { - 1 } \left( - \frac { 17 } { 18 } \right)

B

cos1(13)\cos ^ { - 1 } \left( - \frac { 1 } { 3 } \right)

C

cos1(23)\cos ^ { - 1 } \left( \frac { 2 } { 3 } \right)

D

cos1(89)\cos ^ { - 1 } \left( \frac { 8 } { 9 } \right)

Answer

cos1(1718)\cos ^ { - 1 } \left( - \frac { 17 } { 18 } \right)

Explanation

Solution

Resultant of two vectors A and B, which are working at an angle θ\theta , can be given by

R=A2+B2+2ABcosθR = \sqrt { A ^ { 2 } + B ^ { 2 } + 2 A B \cos \theta }

[As A=B=FA = B = F and R=F3R = \frac { F } { 3 } ]

(F3)2=F2+F2+2F2cosθ\left( \frac { F } { 3 } \right) ^ { 2 } = F ^ { 2 } + F ^ { 2 } + 2 F ^ { 2 } \cos \theta F29=2F2+2F2cosθ\frac { F ^ { 2 } } { 9 } = 2 F ^ { 2 } + 2 F ^ { 2 } \cos \theta

179F2=2F2cosθ\frac { - 17 } { 9 } F ^ { 2 } = 2 F ^ { 2 } \cos \thetacosθ=(1718)\cos \theta = \left( \frac { - 17 } { 18 } \right) or

θ=cos1(1718)\theta = \cos ^ { - 1 } \left( \frac { - 17 } { 18 } \right)