Solveeit Logo

Question

Question: Two forces \({\overrightarrow{F}}_{1} = 5\widehat{i} + 10\widehat{j} - 20\widehat{k}\)and \({\overri...

Two forces F1=5i^+10j^20k^{\overrightarrow{F}}_{1} = 5\widehat{i} + 10\widehat{j} - 20\widehat{k}and F2=10i^5j^15k^{\overrightarrow{F}}_{2} = 10\widehat{i} - 5\widehat{j} - 15\widehat{k} act on a single point. The angle between F1{\overrightarrow{F}}_{1}and F2{\overrightarrow{F}}_{2} is nearly

A

30°

B

45°

C

60°

D

90°

Answer

45°

Explanation

Solution

cosθ=F1.F2F1F2\cos\theta = \frac{\overset{\rightarrow}{F_{1}}.\overset{\rightarrow}{F_{2}}}{|F_{1}||F_{2}|}

=(5i^+10j^20k^).(10i^5j^15k^)25+100+400100+25+225=5050+300525350\mathbf{=}\frac{\mathbf{(5}\widehat{\mathbf{i}}\mathbf{+ 10}\widehat{\mathbf{j}}\mathbf{- 20}\widehat{\mathbf{k}}\mathbf{).(10}\widehat{\mathbf{i}}\mathbf{- 5}\widehat{\mathbf{j}}\mathbf{- 15}\widehat{\mathbf{k}}\mathbf{)}}{\sqrt{\mathbf{25 + 100 + 400}}\sqrt{\mathbf{100 + 25 + 225}}}\mathbf{=}\frac{\mathbf{50}\mathbf{-}\mathbf{50 + 300}}{\sqrt{\mathbf{525}}\sqrt{\mathbf{350}}}

cosθ=12\mathbf{\cos}\mathbf{\theta}\mathbf{=}\frac{\mathbf{1}}{\sqrt{\mathbf{2}}}\mathbf{\therefore} θ=45\mathbf{\theta = 45}\mathbf{{^\circ}}