Solveeit Logo

Question

Question: Two forces \[\begin{aligned} & 3\text{ }N\text{ and 2 }N\text{ are at angle }\theta \text{ such that...

Two forces 3 N and 2 N are at angle θ such that resultant is R. The first is now increased to 6 N and the resultant becomes  2R. The value of θ is. \begin{aligned} & 3\text{ }N\text{ and 2 }N\text{ are at angle }\theta \text{ such that resultant is }R.\text{ The first is now increased to 6 }N\text{ and the resultant becomes } \\\ & \text{2}R.\text{ The value of }\theta \text{ is}\text{.} \\\ \end{aligned}
(A) 30
(B) 60
(C) 90
(D) 120

Explanation

Solution

** Hint:** Use triangle law of vector addition, according to which if two vectors acting on a particle at the same time are represented in magnitude and direction by two sides of a triangle taken in one order, then their resultant vector is represented in magnitude and direction by the third side of triangle taken in opposite order.
Then use the Given condition, and find the value of θ\theta .

Formula used The resultant Force is given by
R=(F1)2+(F2)2+2F1F2cosθR=\sqrt{{{\left( {{F}_{1}} \right)}^{2}}+{{\left( {{F}_{2}} \right)}^{2}}+2{{F}_{1}}{{F}_{2}}\cos \theta }
F1 is first force F2 is second force and θ is angle between the force. \begin{aligned} & {{F}_{1}}\text{ is first force} \\\ & {{\text{F}}_{2}}\text{ is second force} \\\ & \text{and }\theta \text{ is angle between the force}\text{.} \\\ \end{aligned}

Complete step by step solution
We have F1=3N F2=2N \begin{aligned} & {{F}_{1}}=3N \\\ & {{F}_{2}}=2N \\\ \end{aligned}
The resultant force is,
R=(3)2+(2)2+(3)(2)cosθ R2=9+4+12cosθ \begin{aligned} & R=\sqrt{{{\left( 3 \right)}^{2}}+{{\left( 2 \right)}^{2}}+\left( 3 \right)\left( 2 \right)\cos \theta } \\\ & {{R}^{2}}=9+4+12\cos \theta \\\ \end{aligned}
R2=13+12cosθ{{R}^{2}}=13+12\cos \theta ……. (1)
Now force F1{{F}_{1}} is increased to 6N6N and resultant become 2R.2R.
2R=(6)2+(2)2+2(6)(2) cosθ 4R2=36+4+24 cosθ \begin{aligned} & 2R=\sqrt{{{\left( 6 \right)}^{2}}+{{\left( 2 \right)}^{2}}+2\left( 6 \right)\left( 2 \right)\text{ }\cos \theta } \\\ & 4{{R}^{2}}=36+4+24\text{ }\cos \theta \\\ \end{aligned}
4R2=40+24 cosθ4{{R}^{2}}=40+24\text{ cos}\theta …….. (2)
Put the value of R2 from {{R}^{2}}\text{ from } equation (1) into equation (2)

& 4\left( 13+12\text{ cos}\theta \right)=40+24\text{ cos}\theta \\\ & \text{52+48 cos}\theta =40+24\text{ cos}\theta \\\ & \text{12+24 cos}\theta \text{=0} \\\ \end{aligned}$$ $$\begin{aligned} & \text{ }\cos \theta =-\dfrac{1}{2} \\\ & \text{ cos}\theta \text{=180}{}^\circ -60{}^\circ \\\ & \text{ }\theta =120{}^\circ \\\ & \text{ The value of }\theta \text{ is }120{}^\circ \\\ \end{aligned}$$ **Note:** To find the resultant of the two vectors, must read triangle law of vector addition. Also read, Parallelogram law of vectors and polygon law of vectors. By Graphical and Analytical method both.