Solveeit Logo

Question

Question: Two first order reactions have their half lives in the ratio \( 3:2 \) .Calculate the ratio of \( {t...

Two first order reactions have their half lives in the ratio 3:23:2 .Calculate the ratio of t1:t2{t_1}:{t_2} . The time t1{t_1} and t2{t_2} are the time periods for 25%25\% and 75%75\% completion for the first and second reaction.
(a.) 0.311 : 1\left( {a.} \right){\text{ 0}}{\text{.311 : 1}}
(b.) 0.420 : 1\left( {b.} \right){\text{ 0}}{\text{.420 : 1}}
(c.) 0.273 : 1\left( {c.} \right){\text{ 0}}{\text{.273 : 1}}
(d.) 0.119 : 1\left( {d.} \right){\text{ 0}}{\text{.119 : 1}}

Explanation

Solution

Hint : We will find the time taken for the reactions to complete 25%25\% and 75%75\% of its initial value. With the help of half-lives we can find out the reaction constant for the reaction respectively. We will find t1{t_1} and t2{t_2} separately for both the reactions. Then we will find the ratio of t1{t_1} and t2{t_2} .
(1).\left( 1 \right). t = 2.303klog[AAA]t{\text{ = }}\dfrac{{2.303}}{k}{\text{log}}\left[ {\dfrac{A}{{A - {A_ \circ }}}} \right]
Where,
t = t{\text{ = }} Time period for completion of reaction
k = {\text{k = }} Rate constant of reaction
A = {\text{A = }} Initial concentration of reactant
A - A = concentration at time , t{\text{A - }}{{\text{A}}_ \circ }{\text{ = concentration at time , t}}
(2). t12 = 0.693k\left( 2 \right).{\text{ }}{{\text{t}}_{\dfrac{1}{2}}}{\text{ = }}\dfrac{{0.693}}{k} .

Complete Step By Step Answer:
The time taken by the first order reaction to complete is given by:
t = 2.303k1log[AAA]t{\text{ = }}\dfrac{{2.303}}{{{k_1}}}{\text{log}}\left[ {\dfrac{A}{{A - {A_ \circ }}}} \right]
Here at time  t{\text{ t}} the reaction is completed which means the reactants are completely converted into the products. For first reaction which takes times t1{t_1} to complete 25%25\% of its initial value we can write,
t1 = 2.303k1log[10010025]{t_1}{\text{ = }}\dfrac{{2.303}}{{{k_1}}}{\text{log}}\left[ {\dfrac{{100}}{{100 - 25}}} \right]
Here we consider the initial amount of reactant is 100%100\% , then according to the question at 25%25\% the left amount will be 100 - 25100{\text{ - 25}} . Therefore it can be written as,
t1 = 2.303k1log[10075]{t_1}{\text{ = }}\dfrac{{2.303}}{{{k_1}}}{\text{log}}\left[ {\dfrac{{100}}{{75}}} \right] _______________ (1)\left( 1 \right)
Similarly for second reaction which takes time t2{t_2} for its 75%75\% completion, we can write,
t1 = 2.303k2log[10010075]{t_1}{\text{ = }}\dfrac{{2.303}}{{{k_2}}}{\text{log}}\left[ {\dfrac{{100}}{{100 - 75}}} \right]
t2 = 2.303k2log[10025]{t_2}{\text{ = }}\dfrac{{2.303}}{{{k_2}}}{\text{log}}\left[ {\dfrac{{100}}{{25}}} \right] _______________ (2)\left( 2 \right)
Now we have to find the ratio of t1{t_1} and t2{t_2} , therefore divide the equations (1)\left( 1 \right) and (2)\left( 2 \right) .
t1t2 =  2.303k1log[10075] 2.303k2log[10025]\dfrac{{{t_1}}}{{{t_2}}}{\text{ = }}\dfrac{{{\text{ }}\dfrac{{2.303}}{{{k_1}}}{\text{log}}\left[ {\dfrac{{100}}{{75}}} \right]}}{{{\text{ }}\dfrac{{2.303}}{{{k_2}}}{\text{log}}\left[ {\dfrac{{100}}{{25}}} \right]}}
On solving we get the result as:
t1t2 = k2 × 0.123 k1 × 0.602\dfrac{{{t_1}}}{{{t_2}}}{\text{ = }}\dfrac{{{{\text{k}}_2}{\text{ }} \times {\text{ 0}}{\text{.123}}}}{{{\text{ }}{{\text{k}}_1}{\text{ }} \times {\text{ 0}}{\text{.602}}}}
For finding the ratio of k2 and k1{k_2}{\text{ and }}{{\text{k}}_1} we use the concept of half-lives for first order reaction. For first order reaction the half-life of a substance is given by,
 t12 = 0.693k{\text{ }}{{\text{t}}_{\dfrac{1}{2}}}{\text{ = }}\dfrac{{0.693}}{k}
Therefore for first reaction it is given by,
 t12 = 0.693k1{\text{ }}{{\text{t}}_{\dfrac{1}{2}}}{\text{ = }}\dfrac{{0.693}}{{{k_1}}} ___________ (3)\left( 3 \right)
Similarly for second reaction it can be written as,
 t12 = 0.693k2{\text{ }}{{\text{t}}_{\dfrac{1}{2}}}{\text{ = }}\dfrac{{0.693}}{{{k_2}}} ____________ (4)\left( 4 \right)
Also the ratio of half-life time is given as 3:23:2 . On dividing equation (3)\left( 3 \right) and (4)\left( 4 \right) we can write as,
32 =  0.693k1 0.693k2\dfrac{3}{2}{\text{ = }}\dfrac{{{\text{ }}\dfrac{{0.693}}{{{k_1}}}}}{{{\text{ }}\dfrac{{0.693}}{{{k_2}}}}}
32 =  k2 k1\dfrac{3}{2}{\text{ = }}\dfrac{{{\text{ }}{{\text{k}}_2}}}{{{\text{ }}{{\text{k}}_1}}}
Now using this relation we can find the ratio of time also.
t1t2 = k2 × 0.123 k1 × 0.602\dfrac{{{t_1}}}{{{t_2}}}{\text{ = }}\dfrac{{{{\text{k}}_2}{\text{ }} \times {\text{ 0}}{\text{.123}}}}{{{\text{ }}{{\text{k}}_1}{\text{ }} \times {\text{ 0}}{\text{.602}}}}
t1t2 = × 0.1232 × 0.602 \dfrac{{{t_1}}}{{{t_2}}}{\text{ = }}\dfrac{{{\text{3 }} \times {\text{ 0}}{\text{.123}}}}{{2{\text{ }} \times {\text{ 0}}{\text{.602}}}}{\text{ }}
t1t2 = 0.3081 \dfrac{{{t_1}}}{{{t_2}}}{\text{ = }}\dfrac{{0.308}}{1}{\text{ }}
Hence the ratio will be 0.308 : 10.308{\text{ }}:{\text{ }}1 . The nearest answer in the given option is (a.) 0.311 : 1\left( {a.} \right){\text{ 0}}{\text{.311 : 1}}

Note :
The half-life is the time when the concentration of the reactants becomes half of initial value. The value of half time is different for different orders of reaction. The value of rate constant is easily determined by using the given formula for only first order reaction.