Solveeit Logo

Question

Mathematics Question on Probability

Two events AA and BB are said to be independent, if:

A

AA and BB are mutually exclusive.

B

P(AB)=[1P(A)][1P(B)]P(A'B')=[1–P(A)] [1–P(B)]

C

P(A)=P(B)P(A)=P(B)

D

P(A)+P(B)=1P(A)+P(B)=1

Answer

P(AB)=[1P(A)][1P(B)]P(A'B')=[1–P(A)] [1–P(B)]

Explanation

Solution

The correct answer is B:P(AB)=[1P(A)][1P(B)]P(A'B')=[1–P(A)] [1–P(B)]
Two events A and B are said to be independent, if P(AB)=P(A)×P(B)P(AB) = P(A) × P(B)
Consider the result given in alternative B.
P(AB)=[1P(A)][1P(B)]P(A'B')=[1–P(A)] [1–P(B)]
    P(AB)=1P(A)P(B)+P(A).P(B)\implies P(A'\cap B')=1-P(A)-P(B)+P(A).P(B)
    1P(AB)=1P(A)P(B)+P(A).P(B)\implies 1-P(A\cup B)=1-P(A)-P(B)+P(A).P(B)
    P(AB)=P(A)+P(B)P(A).P(B)\implies P(A\cup B)=P(A)+P(B)-P(A).P(B)
    P(A)+P(B)P(AB)=P(A)+P(B)P(A).P(B)\implies P(A)+P(B)-P(AB)=P(A)+P(B)-P(A).P(B)
    P(AB)=P(A).P(B)\implies P(AB)=P(A).P(B)
This implies that A and B are independent, if P(AB)=[1P(A)][1P(B)]P(A'B')=[1–P(A)] [1–P(B)]
Distracter Rationale
A. Let P(A)=m,P(B)=n,0<m,n<1P (A) = m, P (B) = n, 0 < m, n < 1
AA and BB are mutually exclusive
AB=ϕ\therefore A\cap B=\phi
    P(AB)=0\implies P(AB)=0
However, P(A).P(B)=mn0P(A).P(B)=mn\neq0
P(A).P(B)P(AB)\therefore P(A).P(B) \neq P(AB)
C. Let AA: Event of getting an odd number on throw of a die = {1, 3, 5}
    P(A)=36=12\implies P(A)=\frac{3}{6}=\frac{1}{2}
B: Event of getting an even number on throw of a die = {2, 4, 6}
    P(B)=36=12\implies P(B)=\frac{3}{6}=\frac{1}{2}
$$Here, AB=ϕA\cap B=\phi
P(AB)=0\therefore P(AB)=0
P(A).P(B)=140P(A).P(B)=\frac{1}{4} \neq0
    P(A).P(B)P(AB)\implies P(A).P(B) \neq P(AB)
D. From the above example, it can be seen that,
P(A)+P(B)=12+12P(A)+P(B)=\frac{1}{2}+\frac{1}{2}
However, it cannot be inferred that AA and BB are independent.
Thus, the correct answer is B.