Solveeit Logo

Question

Physics Question on Motion in a plane

Two equal vectors have a resultant equal to either of them, then the angle between them will be

A

120120^{\circ}

B

110110^{\circ}

C

6060^{\circ}

D

150150^{\circ}

Answer

120120^{\circ}

Explanation

Solution

Two vectors (inclined at any angle) and their sum vector form a triangle.
It is given that two vectors have a resultant equal to either of them, hence these three vectors form an equilateral triangle each angle of 6060^{\circ}.
In the figure A\vec{A} and B\vec{B} are two vector (A=B)(\vec{A}=\vec{B}) having their sum vectors R\vec{R} such that.


R=A=B\vec{ R }=\vec{ A }=\vec{ B }
Thus, the vectors A\vec{ A } and B\vec{ B } of same magnitude have the resultant vectors R\vec{ R } of the same magnitude.
In this case angle between A\vec{ A } and B\vec{ B } is 120120^{\circ}
Alternative : Let there be two vectors A\vec{ A } and B\vec{ B }
where, A=BA=B
Their sum is
R=A+B\vec{ R }=\vec{ A }+\vec{ B }
Taking self product of both sides, we get
RR=(A+B)(A+B)\vec{ R } \cdot \vec{ R } =(\vec{ A }+\vec{ B }) \cdot(\vec{ A }+\vec{ B })
=AA+2AB+BB=\vec{ A } \cdot \vec{ A }+2 \vec{ A } \cdot \vec{ B }+\vec{ B } \cdot \vec{ B }
=A2+2ABcosθ+B2=A^{2}+2 A B \cos \theta+B^{2}
where θ\theta is angle between A\vec{ A } and B\vec{ B }
When R=A=B\vec{ R }=\vec{ A }=\vec{ B }, then we have
A2=A2+2A2cosθ+A2A^{2}=A^{2}+2 A^{2} \cos \theta+A^{2}
2A2cosθ=A2\Rightarrow 2 A^{2} \cos \theta=-A^{2}
cosθ=12\Rightarrow \cos \theta=-\frac{1}{2}
θ=120\Rightarrow \theta=120^{\circ}
In this condition angle between given vectors should be 120120^{\circ}.